
The University of Brighton, School of Engineering
&

 The University of Sussex, School of Engineering & IT

MSc degree in Digital Electronics
MSc Project (DGM10)

Title:

“Trip Computer & Recorder for Long-Haul Vehicles”

Project Supervisor: Mr. C. S. Knight

Submitted by:

Panagiotis Kenterlis

September 2002

A dissertation submitted in partial fulfilment

of the requirements of the University of

Brighton and the University of Sussex for the

degree of Master of Science in Digital

Electronics.

DDiissccllaaiimmeerr

I hereby certify that the attached dissertation is my own work except where otherwise

indicated. I have identified my sources of information; in particular I have put in quotation

marks any passages that have been quoted word-for-word, and identified their origins.

Information displayed in this report was valid at the time that it was written. The author is

not liable for any future changes.

Date:

Signed:

Panagiotis Kenterlis

o 1-Wire bus, 1-Wire devices, MicroLan, and iButton are all trademarks of Dallas Semiconductors (now

Dallas/Maxim).

o CodeWarrior is a trademark of Metrowerks Inc.

o PowerPC is a trademark of International Business Machines (IBM) Corp.

o Visual Basic is a trademark of Microsoft Corp.

o CompactFlash is a trademark of SanDisk Corporation and is licensed royalty-free to the CFA which in turn

licenses it royalty-free to its members.

AAbbssttrraacctt

The Motorola MPC555 is a powerful microcontroller with a large set of on-chip modules,

which is targeted to the automotive industry for engine control, or other real-time control

applications. This microcontroller was a candidate for use as an education tool by the

Department of Engineering at the University of Brighton.

This report discusses the steps on researching, drawing the basic specifications and

developing a digital trip computer with embedded trip data recorder facilities as a product.

The actual aim of this project is to evaluate the specific microcontroller in a real application

and also promote new ideas in product design in the automotive field. In addition, a number

of different peripheral interfaces are being explored.

Both hardware and software designs are analysed in order to familiarise the reader with

the technology and techniques used. Being considered as an educational tool, this report is

largely shifted to the hardware part of the project, giving it more emphasis; however it is still

significantly linked to the software tools used to produce the generated programs.

The report was written keeping in mind that the reader has some basic knowledge of

microcontrollers and digital electronics. Wherever needed, topics are being discussed in

much detail, while other parts are only briefly mentioned.

CCoonntteennttss

1. INTRODUCTION 1-1

1.1. AIMS OF THE PROJECT 1-2
1.2. MARKET RESEARCH 1-3

2. PROJECT SPECIFICATIONS 2-5

2.1. FUNCTIONAL SYSTEM DIAGRAM 2-6
2.2. JUSTIFICATION OF SELECTIONS 2-8
2.2.1. DATA PROCESSING HARDWARE 2-8
2.2.2. INFORMATION DISPLAY UNIT 2-8
2.2.3. USER DATA INPUT UNIT 2-12
2.2.4. DIGITAL IDENTIFICATION DEVICES 2-12
2.2.5. TEMPERATURE SENSORS 2-16
2.2.6. REAL TIME CLOCK 2-19
2.2.7. STORAGE DEVICE 2-21
2.2.8. COMMUNICATIONS BUS 2-23
2.3. FINALISED SYSTEM OUTLINE 2-24

3. PROJECT DESIGN 3-25

3.1. HARDWARE DESIGN 3-25
3.1.1. AUTOMOTIVE SENSORS 3-25
3.1.1.1. Engine Speed Sensor 3-25
3.1.1.2. Road Speed Sensor 3-26
3.1.1.3. In-Tank Fuel Sensor 3-27
3.1.1.4. Fuel Flow Meter 3-28
3.1.2. MICROCONTROLLER PRESENTATION 3-29
3.1.2.1. Use of Microcontroller Modules in the Project / Configuration 3-30
3.1.3. PERIPHERAL DEVICES 3-42
3.1.3.1. Real Time Clock 3-42
3.1.3.2. Information Display Unit (VFD Module) 3-45
3.1.3.3. Data Entry Unit (Keyboard) 3-47
3.1.3.4. Storage Device (CompactFlash Card) 3-50
3.1.3.5. Digital Identification Devices 3-53
3.1.3.6. Temperature Sensing Devices 3-56
3.1.3.7. Other Circuits 3-58

3.2. SOFTWARE DESIGN 3-59
3.2.1. DEVELOPMENT TOOLS USED 3-59
3.2.1.1. Metrowerks CodeWarrior Registration Issues 3-61
3.2.1.2. Using the Metrowerks CodeWarrior IDE 3-62
3.2.1.3. Configuring the Metrowerks CodeWarrior IDE 3-66
3.2.2. MICROCONTROLLER FIRMWARE CODE EXPLANATION 3-72
3.2.2.1. Trip Data Storage 3-80
3.2.3. PC SOFTWARE CODE EXPLANATION 3-83

4. BUILDING THE PROJECT 4-89

4.1. PRACTICAL BUILDING CONSIDERATIONS 4-89
4.1.1. HARDWARE 4-89
4.1.2. SOFTWARE 4-90

5. TESTING & DEBUGGING 5-91

5.1. ELECTROMAGNETIC COMPATIBILITY ISSUES 5-96

6. PROJECT RESULTS 6-97

7. FUTURE UPGRADES AND DEVELOPMENT 7-99

8. CONCLUSIONS 8-100

9. PROJECT MANAGEMENT 9-101

9.1. HOW WAS THE PROJECT PLANNED? 9-101
9.2. PROBLEMS AND ACHIEVEMENTS 9-102

10. BIBLIOGRAPHY 10-103

11. REFERENCES - OTHER DOCUMENTS 11-104

11.1. URLS 11-105

A. APPENDIX 108

LLiisstt ooff FFiigguurreess

Figure 2-1 Typical trip computer provided by the car manufacturer. __ 1-3
Figure 2-2 Typical low-cost/limited-functionality trip computer sold as a Do-It-Yourself kit.______________________ 1-3
Figure 4-1 Generic System Outline___ 2-6
Figure 4-2 Finalized System Outline __ 2-24
Figure 5-1 Pickup Coil Sensor ___ 3-25
Figure 5-2 Engine Speed Sensor (G Sensor)___ 3-26
Figure 5-3 In-Tank Fuel Sensor __ 3-27
Figure 5-4 Fuel Flow Meter Operation __ 3-28
Figure 5-5 Clock Control ___ 3-31
Figure 5-6 Interrupt Controller __ 3-33
Figure 5-7 QADC_A Channel Connections ___ 3-36
Figure 5-8 External RTC Connections ___ 3-42
Figure 5-9 SPI Single-Byte Write ___ 3-44
Figure 5-10 SPI Single-Byte Read __ 3-44
Figure 5-11 VFD Module Diagram ___ 3-45
Figure 5-12 VFD Connections to the Microcontroller ___ 3-46
Figure 5-13 Keyboard Layout__ 3-47
Figure 5-14 Matrix Layout __ 3-47
Figure 5-15 Keyboard I/O Connections __ 3-48
Figure 5-16 iButton Container Dimensions ___ 3-53
Figure 5-17 iButton connection to a microcontroller__ 3-53
Figure 5-18 iButton ROM Code __ 3-54
Figure 5-19 Temperature Sensor Connections to the Microcontroller_______________________________________ 3-57
Figure 5-20 Buzzer Control ___ 3-58
Figure 5-21 Metrowerks CodeWarrior IDE Main Interface___ 3-59
Figure 5-22 Microsoft Visual Basic 6.0 Programming Environment __ 3-60
Figure 5-23 Metrowerks CodeWarrior Registration Utility ___ 3-61
Figure 5-24 Project Creation #1__ 3-62
Figure 5-25 Project Creation #2__ 3-63
Figure 5-26 Project Creation #3__ 3-63
Figure 5-27 Project Creation #4__ 3-64
Figure 5-28 Project Creation #5__ 3-65
Figure 5-29 Project Manager Window___ 3-65
Figure 5-30 Project Menu___ 3-66
Figure 5-31 Target Selection __ 3-67
Figure 5-32 Target Settings ___ 3-67
Figure 5-33 Debug Version Settings___ 3-68
Figure 5-34 Debug Target Memory Map ___ 3-68
Figure 5-35 IDE Preferences Menu ___ 3-69
Figure 5-36 IDE Preferences __ 3-69

Figure 5-37 ROM Version Settings__ 3-70
Figure 5-38 ROM Target Memory Map __ 3-71
Figure 5-39 CPU Code Execution Priority__ 3-72
Figure 5-40 Trip Stop Record__ 3-80
Figure 5-41 Trailer ID Record ___ 3-81
Figure 5-42 Tachograph Record__ 3-81
Figure 5-43 CompactFlash Information Storage Map ___ 3-82
Figure 5-44 Hardware Configuration Utility __ 3-84
Figure 5-45 Trip Data Upload Utility__ 3-86
Figure 6-1 Photograph of the MPC555 Development Board __ 4-89
Figure 6-2 Development Board with Connected Motherboard___ 4-90
Figure 7-1 Oscilloscope view of square wave signal __ 5-91
Figure 7-2 Multimeter used to test voltage level of I/O pin ___ 5-91
Figure 7-3 PC Terminal Debugging___ 5-92
Figure 7-4 Debugging of the application software using BDM/OCD inside Metrowerks CodeWarrior _____________ 5-93
Figure 7-5 General Purpose Registers of the Microcontroller in BDM while executing the application. ____________ 5-94
Figure 7-6 Source Code Execution Window___ 5-94
Figure 7-7 Sector Contents as uploaded to the PC (1/2) ___ 5-95
Figure 7-8 Sector Contents as uploaded to the PC (2/2) ___ 5-95

LLiisstt ooff AAppppeennddiicceess

Appendix 1 Contents of 555_Axiom_ROM.lcf File ___ 108
Appendix 2 Contents of 555_AXIOM_flash_init.cfg File __ 109
Appendix 3 Photo of Hardware during Development Period ___ 113
Appendix 4 Photo of Developed Hardware___ 114
Appendix 5 GUI Screenshots__ 115
Appendix 6 Gantt chart __ 117
Appendix 7 Manuals and Documents not in Electronic Form __ 120

LLiisstt ooff TTaabblleess

Table 4-1 Display Unit Weights Matrix ___ 2-9
Table 4-2 Display Unit Analyzed Weighted Selection Criteria__ 2-9
Table 4-3 Display Unit Weighted Decision Matrix__ 2-11
Table 4-4 Digital Identification Device Weights Matrix__ 2-12
Table 4-5 Digital Identification Device Analyzed Weighted Selection Criteria ________________________________ 2-13
Table 4-6 Digital Identification Devices__ 2-14
Table 4-7 Digital Identification Device Weighted Decision Matrix ___ 2-15
Table 4-8 Temperature Sensor Weights Matrix __ 2-16
Table 4-9 Temperature Sensor Analyzed Weighted Selection Criteria_______________________________________ 2-16
Table 4-10 Temperature Sensors ___ 2-17
Table 4-11 Temperature Sensor Weighted Decision Matrix___ 2-18
Table 4-12 Real Time Clock Weights Matrix __ 2-19
Table 4-13 Real Time Clock Analyzed Weighted Selection Criteria___ 2-19
Table 4-14 Real Time Clock Devices __ 2-20
Table 4-15 Real Time Clock Weighted Decision Matrix__ 2-20
Table 4-16 Storage Media Weights Matrix __ 2-21
Table 4-17 Storage Media Analyzed Weighted Selection Criteria __ 2-21
Table 4-18 Storage Media___ 2-23
Table 4-19 Storage Media Weighted Decision Matrix ___ 2-23
Table 5-1 Interrupt Sources and Priorities__ 3-32
Table 5-2 MIOS1 Parallel I/O Port Pin Connections__ 3-39
Table 5-3 TPU3 Microcode ROM Functions __ 3-40
Table 5-4 Use of TPU3_A Channels___ 3-41
Table 5-5 External RTC's Registers and Address Map___ 3-43
Table 5-6 Keyboard Row Scan Pattern Codes ___ 3-48
Table 5-7 Keyboard Column Scan Return Codes ___ 3-48
Table 5-8 Pressed Key Lookup Table __ 3-49
Table 5-9 AT Task Files (True IDE mode) __ 3-51
Table 5-10 CompactFlash Connections to the microcontroller __ 3-52

TTeerrmmss UUsseedd

ACK - Acknowledge
BDM – Background Debug Mode
CAN – Controller Area Network
CF Card – CompactFlash Card

CPU – Central Processing Unit
DPTRAM – Dual Ported TPU RAM
EBI – External Bus Interface
ECM – Engine Control Module. Also see ECU.

ECU – Engine Control Unit

EEPROM – Electrically Erasable and Programmable Read Only Memory
FPU – Floating-Point Unit
G1 Sensor – Camshaft Position Sensor
G1 Signal – Output Signal of the G1 Sensor
GPIO – General Purpose I/O
GUI – Graphics User Interface
ICE – In-Circuit Emulator
IDE – Integrated Development Environment
IMB – Inter-Module Bus
IRQ – Interrupt Request
ISR – Interrupt Service Routine
JTAG – Joint Testing Action Group

LBA – Logic Block Addressing
MCU – Micro-Controller Unit
MIOS1 – Modular Input Output System version 1
NACK – Negative Acknowledge
NMI – Non Maskable Interrupt
OCD – On-Chip Debugging
PSU – Power Supply Unit
PWM – Pulse Width Modulation
QADC – Queued Analogue to Digital Converter
QSMCM – Queued Serial Multi-Channel Module
QSPI – Queued Serial Peripheral Interface
RTC – Real Time Clock

SCI – Serial Communication Interface
SGPIO – SIU General Purpose I/O
SIU – System Interface Unit, see USIU

SPI – Serial Peripheral Interface
SRAM – Static Random Access Memory
TPU3 – Time Processor Unit version 3
UIMB - U-BUS TO IMB3 BUS INTERFACE

USIU – Unified System Interface Unit
VCC – Power Supply +5V (unless otherwise specified)
VDD – Power Supply +5V (unless otherwise specified)
VFD – Vacuum Fluorescent Display
VSS – Vehicle Speed Sensor

AAcckknnoowwlleeddggeemmeennttss

I would like to thank my parents for their support through these demanding years of my life

and especially for the year spent in England studying for the MSc in Digital Electronics.

I would also like to thank Mr. John Ellinas and Mr. Panagiotis Drosinopoulos, both

professors during my undergraduate studies at the Technological Education Institute of

Piraeus in Greece for their friendly support and encouragement during my internship at the

Microprocessors laboratory of the same institute.

And of course, Mr. C. S. Knight my supervisor for this project, the report for which you are

reading right now, for the interesting subject.

DE MSc dissertation Issue 1: 16/9/02 Page 1-1 Panagiotis Kenterlis

11.. IInnttrroodduuccttiioonn

Most medium to large sized companies support their own fleet of small cars, vans and

trucks, to meet their transportation demands. Supervising activities of the fleet’s drivers and

minimizing usage costs is always an issue. In addition in the unfortunate case of an accident,

large amounts of money need to be spent on fines, compensations and law suits.

A way of minimizing and avoiding such problems is to be able to record every use of the

fleet’s vehicles. A trip data recorder similar to flight data recorders found in airplanes, also

called a ‘black-box’ by people of the media, is a way of monitoring the driver’s and vehicle’s

road behaviour. Vehicle’s engine and road travel parameters are recorded on a type of

storage media hundreds or even thousands of times a second before and after a crash

accident. These data can then be used to help in simulation to discover the actual events of

the accident.

By implementing a trip computer, a series of information is available to the driver to allow

better trip planning and evaluation. By recording all or some of these pieces of information on

a storage media, they can be afterwards downloaded to a personal computer and examined

to locate points in time where driver or vehicle fails to comply with company’s fleet policy or

plan more efficient routes and trip plans.

DE MSc dissertation Issue 1: 16/9/02 Page 1-2 Panagiotis Kenterlis

11..11.. AAiimmss ooff tthhee PPrroojjeecctt

By taking up this project it was essential to create an innovative product. To achieve this

goal some objectives were considered:

Firstly include functions that are of most interest to a Long-Haul vehicle driver. It is of great

importance for the success of the product to be accepted by the end-user, the driver. If the

driver is reluctant to use the device, then this attitude will have an impact to the adoption of

the product in a wider range inside a company, which means more sales and technical

support charges from the manufacturer’s side.

Secondly, to help a company manage its fleet of vehicles more efficiently by allowing

recording of the road behaviour of its drivers and log events such as loading/unloading,

stopping for fuel/rest etc. These will eventually help the company plan more efficient routes

for its transportation needs. For a company any investment, such as the installation of the trip

computer to all the vehicles of its fleet, should return some profit in any way.

And last but not least, as a bonus function to make the device useful in the investigation of

an accident. This will require from the trip computer to have some trip recorder capabilities,

such as those found on flight recorders of airplanes.

DE MSc dissertation Issue 1: 16/9/02 Page 1-3 Panagiotis Kenterlis

11..22.. MMaarrkkeett RReesseeaarrcchh

In the automotive industry some vehicle manufacturers offer their own solution in either or

both fields of trip computers and trip data recorders. Most modern vehicles offer trip computer

functionalities, however they offer basic pieces of information using a rudimentary user

interface to the driver (Figure 1-1, URL [4], [11], [14]). Some other manufacturers, such as

SCANIA (URL [25]), follow another path of providing a connection port to the vehicle’s control

unit, so that specially engineered software running on a PDA or portable PC can display and

handle all trip and vehicle information. A typical low-cost limited-functionality trip computer for

cars can be found at prices of $100, displaying only a minimum set of information with a

primitive user interface compared to PC user interfaces (Figure 1-2, URL [33]).

Figure 1-1 Typical trip computer provided by the car
manufacturer.

Figure 1-2 Typical low-cost/limited-functionality
trip computer sold as a Do-It-Yourself kit.

In the field of trip data recording few are the manufacturers that offer such functions in their

standard production-line vehicles. Vehicle data recorders are found primarily in F1 racer cars,

where the parameters being recorded are out of proportions to the ones needed for a typical

automotive car installation. Currently IEEE has formed a committee trying to draw a standard

for automotive data recorders that will be adopted by the automotive industry. However a

final standard proposal is not expected to be available for at least 1-1.5 years. In the market

there are only a handful of companies that manufacture data recorders at very high prices,

which is one of the reasons why they are not popular in cars being sold worldwide. In addition

to that, legislation in force on most countries doesn’t require or even promote the use of

vehicle data recorders.

An academic project in digital data recorders for vehicles is currently in progress by

undergraduate students S. Kapetanakis and L. Netsopoulos at the Technological Education

Institute of Piraeus, Faculty of Technology Applications, Department of Electronic Computer

Systems Engineering, in Greece. The team of students is developing an automotive data

DE MSc dissertation Issue 1: 16/9/02 Page 1-4 Panagiotis Kenterlis

recorder based on an 8bit microcontroller and although it acquires information from various

sensors, the limited architecture of their design (small and slow memory) does not allow

recording of many seconds before and after an accident has taken place. In addition a limited

number of samples are acquired every second. Their research although it involves creating a

very interesting piece of hardware it is limited in its design as it is targeted to the low-end of

the automotive market where every penny added in the vehicle’s price counts. Their work is

remarkable in the sense it tries to deal with the actual problem by using low-complexity, low-

cost and easy to find hardware.

Although another, more complex, implementation could arise from this project, the short

time allocated and the complexity of such a venture strictly prohibits any more thoughts on

accident data recorders for automotive purposes.

DE MSc dissertation Issue 1: 16/9/02 Page 2-5 Panagiotis Kenterlis

22.. PPrroojjeecctt SSppeecciiffiiccaattiioonnss

After having researched on the current products available on the market and wanting to

develop a product not similar to what is already available, a list of specifications was drawn.

The device to be built, a Trip Computer for long haul vehicles, will display a series of

vehicle and trip information for use by the driver. In addition, some of this information will be

stored on a non-volatile memory medium for later reviewing and processing at the company’s

headquarters, where useful conclusions can be extracted and help to better manage the

company’s fleet of vehicles.

The preliminary specifications outline published in the pre-course assignment for the MPE

module included most of the items on the finalised specifications list that follows.

1. Average speed.

2. Current speed.

3. Present vehicle location (relative to total trip distance entered at start point).

4. Total elapsed trip time.

5. Battery voltage.

6. Fuel remaining.

7. Distance to empty fuel tank.

8. Total amount of fuel used since trip start.

9. Instantaneous fuel flow rate.

10. Refuel mark-up entry.

11. Elapsed time from last stop point.

12. Estimated time of arrival.

13. Time/Date.

14. Local time.

15. Alarm clock.

16. Engine RPM.

17. Odometer.

18. Outside temperature.

19. Cabin temperature.

20. Tiredness warning after x hours of continuous driving.

21. Driver access control using a digital key.

22. Trailer identification.

DE MSc dissertation Issue 1: 16/9/02 Page 2-6 Panagiotis Kenterlis

22..11.. FFuunnccttiioonnaall SSyysstteemm DDiiaaggrraamm

The following basic diagram presents a generic overview of the connections and

architecture of the system while more explanation is given on the following pages.

Automotive sensors assigned as being either analogue or digital can be found in many forms

by different manufacturers, however in most current vehicles they are found to have outputs

as referenced below.

Figure 2-1 Generic System Outline

The entire project is based on a Micro-Controller Unit (MCU), which processes information

and manages the peripheral modules, in order to deliver to the user the end-effect of a

perfectly working system.

The engine’s speed, vehicle’s road speed and fuel consumption (flow meter) are digital

inputs with the information carried in the frequency of the generated pulses (or otherwise

stated the number of pulses within a time window of e.g. 1sec). For the analogue signals,

some conversion is required by A/D converters before being fed to the MCU, so that the

information carried by the voltage value can be extracted. The in-tank fuel sensor measures

DE MSc dissertation Issue 1: 16/9/02 Page 2-7 Panagiotis Kenterlis

the amount of fuel left in the fuel tank and the battery voltage input gives an indication of the

vehicle’s battery health.

Both cabin and outside temperature are measured by thermometer devices and the

temperature readings are only used for display purposes, and not for control.

These ID devices are marked with a unique serial number used in conjunction to a

database to identify the driver’s name or trailer contents.

The external Real Time clock is used to hold current time and date, which can be

presented on the display unit. It should also be able to provide a time reference of one

second, which can be useful for various functions e.g. speed measurement.

A non-volatile storage media is used to store trip and vehicle data, which can be uploaded

to a PC at the end of a trip for further process and statistical analysis. Information such as

speed, attached trailers, distance covered, driver on wheel, amount of fuel used, etc are

recorded on specific intervals or upon activation of an event.

A communications interface allows a PC with the proper software to connect to the trip

computer while the vehicle is stopped and perform functions such as to download sensor

configuration data and/or upload the data stored in the memory device. A high speed

communications bus is desirable to minimize upload times when the amount of stored data is

large.

DE MSc dissertation Issue 1: 16/9/02 Page 2-8 Panagiotis Kenterlis

22..22.. JJuussttiiffiiccaattiioonn ooff SSeelleeccttiioonnss

After having drawn an initial project specifications outline, the technology behind every box

needs to be defined. The following pages describe how decisions were made towards finding

the right parts for the project.

22..22..11.. DDaattaa PPrroocceessssiinngg HHaarrddwwaarree

In the automotive field of applications few processors are currently used. Most of them are

high-speed 32bit processors or microcontrollers with embedded modules providing functions

that fit in the automotive environment. Right from the start of this project the selection of the

processor to be used had been pre-determined by the supervisor as an attempt to evaluate

the microcontroller for use as an educational tool. The Motorola MPC555, a very powerful

32bit microcontroller oriented towards automotive applications and largely used for Engine

Control Units (ECUs), was available by the University in a development board and was

accompanied by all the necessary development tools.

Taking into account the number and functionality of modules available on the

microcontroller, the specifications for the peripheral devices to follow were limited to fit the

microcontroller and help make decisions easier.

22..22..22.. IInnffoorrmmaattiioonn DDiissppllaayy UUnniitt

The digital Trip Computer must provide very important information to the driver by means of

a User Interface. Information needs to be displayed, selected and inputted to the trip

computer. The driver can select from a pre-defined set of information and determine which

functions should be activated and when. As a first step, information needs to be displayed in

a form that is directly recognizable and utilizable. Text and graphics is the most important and

commonly found form. Four display interfaces are most used for control applications: LED,

LCD, VFD and CRT. The following pages contain analyzed information on each display type

and through comparative thinking one of them will be selected as the best fit for the project.

Where text/numerical displays are discussed a 4 row x 20 characters standard display is

considered, and for the graphics displays, a pixel matrix of 128x64 at minimum.

DE MSc dissertation Issue 1: 16/9/02 Page 2-9 Panagiotis Kenterlis

Table 2-1 Display Unit Weights Matrix
 A B C D E F G H De-normalized Normalized
Amount of Displayable Information A = + + + = = - - 1 9
Discernible Display B - = + + + + - - 1 9
Interface Type C - - = - - - - - -7 1
Interfacing Complexity D - - + = - + - = -2 6
Custom Information Type Display E = - + + = + - + 2 10
Power Consumption F = - + - - = = - -4 4
Dimensions G + + + + + = = + 6 14
Relative Cost per Amount
of Information Displayable

H + + + = - + - = 2 10

Table 2-2 Display Unit Analyzed Weighted Selection Criteria
Selection Criteria Description Points Weighted

Points
Less than 10 Characters 1 9
More than 10 Characters – Less than 80 Characters 2 18

A. Amount of Displayable
Information

More than 80 Characters 3 27
Only in Dark Environments -1 -9
Only in Bright Environments -1 -9
Special Lighting Circuit Required 1 9

B. Discernible Display

Irrespective of Environment Lighting 2 18
Serial Interface 3 3
Parallel Interface 2 2

C. Interface Type:

Proprietary Interface -1 -1
Requires External Logic 1 6
Requires Special Connector -1 -6
Requires External Logic & Special Connector -2 -12

D. Interfacing Complexity:

Requires No External Logic 2 12
Numbers Only -1 -10
Text Only 1 10
Text Only + Custom Characters 2 20
Graphics + Text 3 30

E. Custom Information
Type Display

Graphics + Text + Custom Characters 4 40
Normal Power Supply (less than 1A) 2 8
Normal Power Supply (more than 1A) 1 4

F. Power Consumption

Special Power Supply -2 -8
Small 2 28
Medium 1 14

G. Dimensions (relative to
the dimensions of the
information display area) Large -1 -14

Low 2 20
Average 1 10

H. Relative Cost per
Amount of Information
Displayable High -1 -10

DE MSc dissertation Issue 1: 16/9/02 Page 2-10 Panagiotis Kenterlis

Some information on every type of displays is given below. Advantages and

disadvantages given are considered from the writer’s point of view.

7-Segment LED Displays

 Found in many sizes.
 High visibility in most lighting conditions.
 Relatively low cost in small displays.
 High power consumption.
 Driving circuits are complex when using multiplexing for large displays.
 Data conversion is required.
 Standard non-customisable display font.
 Aesthetic result is not always respectable from a user’s point of view.

VFD (Vacuum Fluorescent Display)

 Excellent visibility/brightness
 No need for backlight hardware.
 Available in wide range of colours.
 Available in graphics and text displays.
 Wide operating temperature range.
 Wide viewing angle.
 Medium cost relative to size.
 Higher cost than LCD modules.

LCD (Liquid Crystal Display)

Character LCD

 Easy to interface.
 Relatively of low-medium cost according to text dimensions.
 Standard controller interface and programming.
 Assisted by backlight techniques for dark environments.
 Few customisable characters (up to 8).
 Standard character set.
 Limited row x column dimensions.
 Backlight hardware can draw much current or require

special hardware.
 Limited viewing angle.

Graphic LCD

 Entire character set can be customized.
 Able to display bitmapped graphics to allow a friendlier user

interface.
 Easy to interface to any microcontroller.
 Found in a variety of dimensions and pixel count.
 Also found in colour versions.
 Assisted by backlight techniques for dark environments.
 Found in pre-assembled module form.
 Programming is highly dependent on the controller used.
 Backlight hardware can draw much current or require

special hardware.
 High cost relative to size.
 Limited viewing angle.

DE MSc dissertation Issue 1: 16/9/02 Page 2-11 Panagiotis Kenterlis

CRT (Cathode Ray Tube)

 All purpose (graphics, text, and moving picture).
 Found in colour and monochrome phosphor coating.
 Need special interfacing hardware.
 Require high voltages to operate (15-25KV).
 Bulky.
 Heavy.
 Relatively of low cost according to size, quality,

resolution, display type (colour or monochrome) and
interface technique.

Table 2-3 Display Unit Weighted Decision Matrix
Display Technology A B C D E F G H Total Points
LED 9 -9 2 6 -10 8 14 -10 10
VFD (Text) 18 18 2 6 10 8 28 10 100
VFD (Graphics) 27 18 2 6 30 8 28 20 139
LCD (Text) 18 9 2 6 20 8 28 10 101
LCD (Graphics) 27 9 2 6 40 4 28 20 136
CRT 27 18 -1 -12 30 8 -14 20 76

DE MSc dissertation Issue 1: 16/9/02 Page 2-12 Panagiotis Kenterlis

22..22..33.. UUsseerr DDaattaa IInnppuutt UUnniitt

At some points in time the driver may need to input data or select different information

screens. In PC environments this is usually done by using a keyboard and/or a mouse.

However in control applications there is rarely the need for a full alphanumerical keyboard or

even more unlikely a high-precision pointing device.

The most common input device is the matrix keyboard, which is easily manufactured to fit

specifications and at low cost. Other options available, such as touch-screens, voice

recognition, etc, not only require exotic driving circuits but also add software overhead and

most importantly exceed cost for use and therefore are rejected.

22..22..44.. DDiiggiittaall IIddeennttiiffiiccaattiioonn DDeevviicceess

For the project it is essential to identify different drivers and attached trailers using a

medium that is cost effective, require little or no extra hardware, easy to use, reliable, small in

dimensions and capable of operating in long distances from the main device, and at harsh

environmental conditions.

To make a selection easier, a list of criteria to be considered was drawn and different

weight of significance was assigned to each criterion.

Table 2-4 Digital Identification Device Weights Matrix
 A B C D E F G H I J K De-normalized Normalized
Unique ID A = = + - - - - + - - - -5 6
Programmability B = = + - - - - + - - - -5 6
Secure Communications C - - = - - - - - - - - -10 1
Multiple Devices Support
on Same Reader

D + + + = + = + + = = - 5 16

Interfacing Complexity E + + + - = - + = - - = 0 11
Endurance at
Harsh Environments

F + + + = + = + + = + - 6 17

Dimensions G + + + - - - = = - = - -2 9
Ease of Installation H - - + - = - = = = - - -5 6
Maintenance I + + + = + = + = = = = 5 16
Cost of ID Device J + + + = + - = + = = = 4 15
Cost of Interfacing K + + + + = + + + = = = 7 18

Having weighed the significance of each criterion for the project, an analytical options table

for each of them was built with points assigned to define the desired qualities from the device

to be selected for use in the project.

DE MSc dissertation Issue 1: 16/9/02 Page 2-13 Panagiotis Kenterlis

Table 2-5 Digital Identification Device Analyzed Weighted Selection Criteria
Selection Criteria Description Points Weighted

Points
No 1 6 A. Unique ID
Yes 2 12
No 1 6
Some Programmable Features 2 12

B. Programmability

Yes 3 18
No 1 1
Some Security Features 2 2

C. Secure
Communications

Yes 3 3
No -1 -16 D. Multiple Device

Support on Same Reader Yes 1 16
No Special Hardware Needed 2 22
Special Connector Needed 1 11
External Circuits Needed -1 -11

E. Interfacing Complexity

External Circuits + Connector Needed -2 -22
Sensitive Device -2 -34 F. Endurance at

Harsh Environments Durable 2 34
Tiny 1 9
Small 2 18
Medium-Sized -1 -9

G. Dimensions

Bulky -2 -18
Simple Placement 2 12
Some Special Fitting Required 1 6

H. Simplicity of
Installation

Special Fitting Required -2 -12
No Maintenance Required 2 32
Periodical Service May Be Required 1 16

I. Maintenance

Frequent Service Required -2 -32
Low 2 30
Average 1 15

J. Cost of ID Device

High -1 -15
Low 2 36
Average 1 18

K. Cost of Interfacing

High -1 -18

A unique ID code although being a very attractive idea, it is not always present or

applicable in actual products. In this case, it is necessary for the ID device to be

programmable at least partly. By programming a device using a centralized control tool to

assign unique serial numbers for own use, it is easy to create databases of categorized ID

codes for drivers, trailers, containers etc.

For this project, increased security features are not required, since no security issues can

be located, however should that is requested in the future, a device that allows secure

information storage and exchange is always desirable as long as cost is not increased

dramatically.

The ability to use the same device reader to access multiple ID keys at the same time is a

highly important feature, since it can effectively reduce the number of readers needed and

hence reduce cost. Connecting ID devices over a common medium is one way of achieving

this goal.

DE MSc dissertation Issue 1: 16/9/02 Page 2-14 Panagiotis Kenterlis

Interface complexity should always be kept to a minimum level, to avoid introducing

unstable behaviour and cost increase.

Endurance at harsh environments is another wanted feature, since the devices are likely to

experience a wide range of climate changes and mechanical strain during a trip. Physical

dimensions are important when the ID key needs to be carried by a driver or to be placed in

the tractor, or trailers. Extremely small or large devices can be difficult to manipulate in all

cases. Installation can become an issue if there is need to remove parts or otherwise

physically alter the vehicle’s or the trailers’ structure. Simple installation is always desirable.

Maintenance can be brought to a minimum if the device’s endurance is high and lifetime

long. Maintenance increases cost of use and makes a product less appealing, should

frequent service or replacement is needed. If maintenance is required while still on a trip,

unwanted problems in use of the trip computer may arise.

As always cost of the ID devices and interfacing should be kept to a minimum. Costly

products are seldom appealing.

Table 2-6 Digital Identification Devices
 RFID SmartCard iButton Magnetic

Strip Card
Barcode

Unique ID Depending on
Device

Depending on
Card Yes (64bit) No No

Programmability Depending on
Device Yes Depending on

Device Yes No

Secure
Communication

Depending on
Device

Depending on
Device

Depending on
Device

Depending on
Device No

Reliable
Communication

Depending on
Distance -

Error
Checking

Error
Checking

Error
Checking

Error
Checking

Error
Checking

Multiple Device
Support on Same
Reader

Yes No Yes No No

Interfacing
Complexity Special

Hardware
Reader

Required

Special
Hardware
Reader &
Connector
Required

2-Terminal
Connector &

Software
Emulation of
Interface by

any
microcontroller

Special
Hardware
Reader &
Connector
Required

Special
Hardware
Reader

Required

Endurance at
Harsh Environments Yes Average Yes No No

Dimensions Small/Average Small/Average Small Average/Large Average/Large
Simplicity
of Installation

Transceiver
and RF
Antenna
Fitting

Required

Small Card
Socket

Installation

Simple
Battery Holder

or Two
Terminal

Probe

Reader
Device

Installation

Reader
Device

Installation

Maintenance Periodical
Service May
Be Required

Periodical
Service May
Be Required

None - Little
Periodical

Service May
Be Required

Periodical
Service May
Be Required

Cost of ID Device Low Low Low Low Low
Cost of Interfacing High Average Low High High

DE MSc dissertation Issue 1: 16/9/02 Page 2-15 Panagiotis Kenterlis

The above introduced digital ID devices need to be weighted to select the best fit for the

project.

Table 2-7 Digital Identification Device Weighted Decision Matrix
 A B C D E F G H I J K Total Points
RFID 12 12 2 16 -11 34 9 -12 16 30 -18 90
SmartCard 12 12 2 -16 -22 34 18 6 16 30 18 110
iButton 12 12 2 16 22 34 18 12 32 30 36 226
Magnetic Swipe Card 6 18 2 -16 -22 -34 -9 6 16 30 -18 -21
Barcode 6 6 1 -16 -11 -34 18 12 16 30 -18 10

Having used parts of the 1-Wire family range of products by Dallas Semiconductors as

basic elements of my undergraduate project, accumulated knowledge can be considered an

asset in developing the project in shorter time.

DE MSc dissertation Issue 1: 16/9/02 Page 2-16 Panagiotis Kenterlis

22..22..55.. TTeemmppeerraattuurree SSeennssoorrss

A set of temperature sensors needs to be used to provide temperature readings of the

driver’s cabin (cockpit) and the outside environment. These readings will be printed on the

display unit already selected in previous pages. To make sure the right temperature sensor is

to be used, the selection procedure is performed with the use of decision matrices.

Table 2-8 Temperature Sensor Weights Matrix
Criteria A B C D E F G De-normalized Normalized
Interface Type A = + - - = - - -3 1
Temperature Range B - = = + - - - -3 1
Temperature Resolution C + = = = - - - -2 2
Accuracy D + - = = - - - -3 1
Required Wiring E = + + + = - - 1 5
Cost of Sensor F + + + + + = = 5 9
Cost of Interfacing G + + + + + = = 5 9

Table 2-9 Temperature Sensor Analyzed Weighted Selection Criteria
Selection Criteria Description Points Weighted

Points
Analogue 1 1
Digital – Parallel -1 -1
Digital – Serial (I2C) -1 -1
Digital – Serial (SPI) 2 2

A. Interface Type

Digital – Serial (1-Wire) 3 3
-40οC +55οC 1 1
-55οC +85οC 2 2

B. Temperature Range

-55οC +125οC 3 3
1οC 1 2
0.5οC 2 4
0.25οC 3 6
0.125οC 4 8

C. Temperature
Resolution

0.0625οC 5 10
±4οC 1 1
±3οC 2 2
±2οC 3 3
±1οC 4 4

D. Accuracy

±0.5οC 5 5
2 – Wires 3 15
3 – Wires 2 10
4 – Wires 1 5

E. Required Wiring

More than 4 Wires -1 -5
Low Cost (<$1) 2 18
Medium Cost – ($1< cost > $2) 1 9

F. Cost of Sensor

High Cost – (> $2) -1 -9
Low 2 18
Average 1 9

G. Cost of Interfacing

High -1 -9

DE MSc dissertation Issue 1: 16/9/02 Page 2-17 Panagiotis Kenterlis

Analogue sensors although very commonly used in many applications, in the case of

automotive applications can become a source of problems because of high electrical noise

levels created by the engine. Digital sensors can circumvent this problem by using an error

detection technique. In addition the temperature reading from a digital sensor is always

formatted as a value in units of a measurement system, most commonly degrees Celsius,

and therefore no calculations or conversions are required from voltage levels to digital

values.

The type of interface although it is important, it can always be emulated by a

microcontroller with enough I/O pins. In the case of the microcontroller SPI and parallel

interfaces are available in hardware, while I2C and 1-Wire need to be emulated.

Using a temperature sensor that works in extreme temperatures allows a future upgrade to

include temperature readings from various engine sections.

Although a high resolution in temperature readings is not required for this application, it is

always considered a credit. Accuracy of temperature reading is always desired to be as good

as possible, but without an increase in cost.

The number of wires is again related to electrical noise present as well as cost, cable

length and installation complexity. The fewer the wires required to connect to the sensor, the

better.

In the following description table, four of the most used temperature sensors are analysed.

Table 2-10 Temperature Sensors
 Thermistor MAX6662 DS1820 LM75
A. Interface Type Analogue SPI 1-Wire I2C
B. Temperature Range Depending

on Device -55°C to +150°C -55°C to +125°C -55°C to
+125°C

C. Temperature
Resolution

Depending
on Device –

Average

12-Bit + Sign,
0.0625°C Resolution

12-Bit + Sign,
0.0625°C

Resolution
.5 °C

D. Accuracy Depending
on Device –

Not Very
Good

±1°C max to ±2.5 typ
depending on

temperature range

±1οC ±3οC

E. Required Wiring 2-3 Wires 7 Wires 3 Wires 8 Wires
F. Cost of Sensor Depending

on Device –
Average/High

$1.37 $1.76 $0.90

G. Cost of Interfacing Low Low Low Low
Packaging - 8/SOT23 TO-92 SOP-8
Manufacturer - Maxim/Dallas Maxim/Dallas National

Semiconductors

DE MSc dissertation Issue 1: 16/9/02 Page 2-18 Panagiotis Kenterlis

Only one of the above temperature sensors is the most suitable for the project, and by

creating the weighted decision matrix above the right part was found.

Table 2-11 Temperature Sensor Weighted Decision Matrix
Temperature Sensor A B C D E F G Total Points
Thermistor 1 3 4 1 15 -9 18 33
MAX6662 2 3 10 2 -5 9 18 39
DS18B20 3 3 10 5 15 9 18 63
LM75 -1 3 4 2 -5 18 18 39

The DS18B20 having the same interface as the digital identification device selected in

previous pages, can be characterized as an excellent selection, considering the fact that

most software routines developed will be common and no extra hardware is required.

DE MSc dissertation Issue 1: 16/9/02 Page 2-19 Panagiotis Kenterlis

22..22..66.. RReeaall TTiimmee CClloocckk

A Real Time Clock is a device that holds the current time and date in a set of counters

clocked by a time reference signal, usually a square wave with a frequency of 1Hz. This

reference square wave pulse is derived from an external crystal or other square wave signal

source.

Dallas/Maxim is a huge manufacturer of RTC’s and also provides samples of products,

free of charge. All of the below mentioned RTC’s were obtained as samples before deciding

which to use.

Table 2-12 Real Time Clock Weights Matrix
 A B C D E F G H De-normalized Normalized
Real Time Data Format A = + + + + + + + 7 14
Interface Type B - = = = + - + - 0 7
Interfacing Complexity C - = = + + + + = 4 11
Backup Power Supply D - = - = + - = - -2 5
Interrupt Outputs E - - - - = - - - -6 1
Interrupt (1Hz) F - + - + + = + - 2 9
CMOS RAM on-chip G - - - = + - = - -3 4
Cost H - + = + + + + = 5 12

Table 2-13 Real Time Clock Analyzed Weighted Selection Criteria
Selection Criteria Description Points Weighted

Points
Binary -1 -14 A. Real Time Data Format:
Full format – hh:mm:ss dd/mm/yy 1 14
Serial Interface – SPI 2 14
Serial Interface – 1-Wire bus 1 7
Serial Interface – I2C/3-Wire -1 -7
Parallel Interface (De-multiplexed) 1 14

B. Interface Type:

Parallel Interface (Multiplexed) -2 -14
Requires External Logic -1 -11 C. Interfacing Complexity:
Requires No External Logic 1 11
Backup Battery Input 1 5 D. Backup Power Supply:
No Backup Power Supply -1 -5
No Interrupt Outputs -2 -2
One Interrupt Output 1 1

E. Interrupt Outputs:

Two Interrupt Outputs 2 2
Available 1 9 F. Interrupt (1Hz):
Unavailable -1 -9
No RAM -1 -4
Less than 32bytes 1 4
More than 32bytes –
Less than or Equal to 96bytes

2 8

G. CMOS RAM on-chip:

More than 96bytes 3 12
Low Cost (<$2) 2 24
Medium – ($2< cost > $4) 1 12

H. Cost

High – (>$4) -1 -12

DE MSc dissertation Issue 1: 16/9/02 Page 2-20 Panagiotis Kenterlis

Having the RTC counting in binary format can be a source of problems, since there is

need to convert the amount of seconds counted into minutes, hours, days, months, etc allow

for calendar corrections according to a reference day. Practically this would require a great

deal of calculations to convert the number of seconds into meaningful and displayable time

information. On the other hand counting in full format (as explained above) only requires for

some registers to be read and possibly converting their contents into displayable information.

Interfaces available directly by the microcontroller are SPI and de-multiplexed

data/address bus. Communications protocols such as 1-Wire and I2C although not available

in hardware; they can be emulated in software, with 1-Wire being already used for Digital

Identification keys and Temperature Sensor devices.

Interfacing complexity is always an issue when having to create a prototype or build a

finalized circuit board. If additional external circuitry is needed, then total cost increases.

Combining a backup power supply (a battery) with internal RAM, makes the RTC chip an

ideal backup storage for important system data.

The number of interrupt outputs is important if every output can generate interrupt signals

with different programmed time period or at a specific time/date. An interrupt signal

generated every 1 second can be extremely useful for measurements, calculations or simply

as a means of knowing when the contents of the RTC have changed.

Cost, as always, is an important factor when selecting parts for a project. The lowest the

cost of parts used, the better.

Table 2-14 Real Time Clock Devices
 DS12C887 DS2417 DS1305 MAX6902
Real Time Data Format Full Format Binary Full Format Full Format
Interface Type Muxed Data/Address Bus 1-Wire Bus SPI SPI
Backup Power Supply Yes No Yes Yes
Interrupt Outputs 1 1 2 0
Interrupt (1Hz) Yes Yes Yes No
CMOS RAM on-chip 113 Bytes - 96 Bytes 31 Bytes
Cost $4.80 $0.92 $1.84 $1.45
Manufacturer Dallas/Maxim Dallas/Maxim Dallas/Maxim Dallas/Maxim

Table 2-15 Real Time Clock Weighted Decision Matrix
Display Technology A B C D E F G H Total Points
DS12C887 14 -14 -11 5 1 9 12 -12 4
DS2417 -14 7 11 -5 1 9 -4 24 29
DS1305 14 14 11 5 2 9 8 24 87
MAX6902 14 14 11 5 -2 -9 4 24 61

DE MSc dissertation Issue 1: 16/9/02 Page 2-21 Panagiotis Kenterlis

22..22..77.. SSttoorraaggee DDeevviiccee

Some of the data acquired from the vehicle’s sensors and digital ID devices need to be

stored for later process at the company’s headquarters. Due to the extended time of a trip the

amount of data can be large, so memory devices with correspondingly large capacities are

required. The storage device to be used needs to be non-volatile to retain data even after

power disconnection or momentary loss. On the following pages some of the most popular

memory devices on the market are analysed and through comparative thinking the most

suitable for the project is selected.

Table 2-16 Storage Media Weights Matrix
 A B C D E F De-normalized Normalized
Capacity Range A = - - + - - -3 3
Interface Type B + = - + + - 1 7
Interfacing Complexity C + + = + + - 3 9
Access Mode D - - - = - - -5 1
Transfer Speed E + - - + = - -1 5
Cost/MB F + + + + + = 5 11

Table 2-17 Storage Media Analyzed Weighted Selection Criteria
Selection Criteria Description Points Weighted

Points
Below 1MByte per unit -2 -6
Over 1MByte and less than 32MB 1 3

A. Capacity Range:

Over 1Mbyte and up to 1GB 2 6
Serial Interface 1 7 B. Interface Type:
Parallel Interface 2 14
Requires External Logic 1 9
Requires Special Connector 1 9
Requires External Logic & Special Connector -1 -9

C. Interfacing Complexity:

Requires No External Logic 2 18
Byte Read – Byte Write 3 3
Byte Read – Block Write 2 2

D. Access Mode:

Block Read – Block Write 1 1
Slow (less than 100KB/sec) -1 -5
Medium (more than 100KB/sec – less than 1MB/sec) 1 5

E. Transfer Speed:

Fast (more than 1MB/sec) 2 10
Low (less than 50p) 2 22
Average (more than 50p -less than £1) 1 11

F. Cost per MB

High (more than £2) -1 -11

DE MSc dissertation Issue 1: 16/9/02 Page 2-22 Panagiotis Kenterlis

E2PROM & FLASH

Both these data storage technologies are available by many

manufacturers, however due to packaging and pin count (because

of individual byte read support) it is very difficult to market large

capacity devices due to cost. The basics behind their technologies

are used by the other devices analysed.

CompactFlash Card

The CompactFlash Card is a FLASH memory device that uses

the same interface protocols and signals as ordinary ATA drives,

that is hard disk drives. Its capacity ranges from a few hundred

kilobytes to a few hundred megabytes. It implements three different

interface protocols to allow interfacing for different application

requirements. It is small in dimensions, fast, reliable and robust.

SmartMedia

The SmartMedia is a FLASH memory device that uses a

proprietary parallel interface. It is small in dimensions, fast, reliable

and robust. It can be easily interfaced and is used in many

applications for data storage. Its parallel interface uses time

multiplexing to reduce pin count, thus requires a multiplexed

address/data bus from the processor.

Memory Stick

The Memory Stick is a FLASH memory device that uses a

proprietary serial interface, thus allowing the use of less I/O pins. It

is small in dimensions, fast, reliable and robust.

DE MSc dissertation Issue 1: 16/9/02 Page 2-23 Panagiotis Kenterlis

Table 2-18 Storage Media
 E2PROM FLASH CompactFlash Smart Media Memory Stick
Capacity Range 16kbit-4Mbit 256kbit-64Mbit 4-256MBytes 32-256MBytes 4-128MBytes
Interface Parallel Parallel Proprietary

Parallel - ATA
Proprietary

Parallel
Proprietary

Serial
Access Mode Block Alterable

Byte Access
Block Alterable

Byte Access
Block Alterable
Block Access

Block Alterable
Block Access

Block Alterable
Block Access

Write Times Slow Average Fast Fast Fast
Cost £27

(for 1Mbit)
£16-23

(for 8Mbit)
48p per MByte

(for 32MB)
33p per MByte

(for 32MB)
62p per MByte

(for 32MB)
Other Separate

Programming
Power Supply

Required

 Three Different
Access Modes

• Prices and capacity ranges as found on July-August 2002

Table 2-19 Storage Media Weighted Decision Matrix
Storage Device A B C D E F Total Points
E2PROM 3 14 9 2 -5 -11 12
FLASH 3 14 9 2 5 -11 12
CompactFlash 6 14 18 1 10 22 71
SmartMedia 6 14 -9 1 10 22 44
Memory Stick 6 7 -9 1 10 11 26

The CompactFlash Card having collected the most points for its features is effectively

characterized as the most suitable storage media for the project and will be analysed in more

depth in the Hardware Design section o this report (Chapter 3.1.3.4, p. 3-50).

22..22..88.. CCoommmmuunniiccaattiioonnss BBuuss

Having nearly reached the budget limit for the project, an exotic solution in the decision for

a high-speed communications bus for connection to a personal computer, could not be

followed. Instead as a communication medium to a Personal Computer to download or

upload data, one of the serial ports on the microcontroller was selected, running at the

highest possible speed.

DE MSc dissertation Issue 1: 16/9/02 Page 2-24 Panagiotis Kenterlis

22..33.. FFiinnaalliisseedd SSyysstteemm OOuuttlliinnee

Having selected the parts most suitable the project, a finalized system outline was drawn

and is shown in Figure 2-2 below.

Figure 2-2 Finalized System Outline

DE MSc dissertation Issue 1: 16/9/02 Page 3-25 Panagiotis Kenterlis

33.. PPrroojjeecctt DDeessiiggnn

The project can be partitioned into two design areas, the Hardware Design and the

Software Design. In this chapter both partitions will be presented and analysed as much as

possible without reaching into much depth. For more in-depth information on modules and

functions, please consult the datasheets that are found in the accompanying CD-ROM.

33..11.. HHaarrddwwaarree DDeessiiggnn

33..11..11.. AAuuttoommoottiivvee SSeennssoorrss

33..11..11..11.. EEnnggiinnee SSppeeeedd SSeennssoorr

The Engine Speed information is derived from the Camshaft Position Sensor (also called

G1 Sensor). The G1 Sensor is of the pick-up coil type sensor, although many other types are

also used by car manufacturers. This type of sensor consists of a permanent magnet, yoke,

and coil. This sensor is mounted close to a toothed gear. This gear is connected to the

camshaft, providing a 1:1 ratio of the actual engine speed. As each tooth moves by the

sensor, an AC voltage pulse is induced in the coil. Each tooth produces a pulse. As the gear

rotates faster more pulses are produced. The ECM determines the speed the gear is

revolving based on the number of pulses. The number of pulses per second is the signal

frequency.

Figure 3-1 Pickup Coil Sensor

DE MSc dissertation Issue 1: 16/9/02 Page 3-26 Panagiotis Kenterlis

Figure 3-2 Engine Speed Sensor (G1 Sensor)

In the case of the G1 Sensor, by multiplying the number of pulses counted in a second

with the number of seconds per minute, the engine’s speed per minute is calculated.

However a camshaft gear may have more than one tooth hence the number of pulses

counted per engine revolution are a multiple of the number of teeth on the gear. Before doing

any further calculations, division of the counted pulses by the number of teeth present is

required to extract the number of engine revolutions.

The output of the G1 Sensor, after being conditioned to output clean square wave pulses,

is fed to the microcontroller by using a TPU3 channel input as will be discussed later in this

report.

33..11..11..22.. RRooaadd SSppeeeedd SSeennssoorr

The Road Speed Sensor (or Vehicle Speed Sensor, VSS) is typically of the same type as

the Engine Speed Sensor, although many other types also exist. It is either located in the

transaxle or the transmission of the vehicle. The vehicle’s speed is again coded in the

frequency of the output signal.

Knowing the number of pulses produced per wheel revolution, the number of pulses

counted in one second and the perimeter (circumference) of the tire it is easy to calculate the

vehicle’s speed.

60mins60secsPerimeter Tire
Revolution Per Wheel Pulses

Second 1in Pulses CountedSpeed Vehicle ⋅⋅⋅=

DE MSc dissertation Issue 1: 16/9/02 Page 3-27 Panagiotis Kenterlis

33..11..11..33.. IInn--TTaannkk FFuueell SSeennssoorr

The In-Tank Fuel Sensor, also known as Fuel Tank Sending Unit, is as its name reveals

located in the fuel tank of the car. It consists of a float, usually made of foam, connected to a

thin, metal rod. The end of the rod is mounted on a potentiometer. In a fuel tank, the

potentiometer consists of a strip of resistive material connected on one side to the ground. A

wiper connected to the gauge slides along this strip of material, conducting the current from

the gauge to the resistor.

Figure 3-3 In-Tank Fuel Sensor

If the wiper is close to the grounded side of the strip, there is less resistive material in the

path of the current, so the resistance is small and the voltage that is measured on the wiper

terminal is small. If the wiper is at the other end of the strip, there is more resistive material in

the current's path, so the resistance is large and the voltage that is measured on the wiper

terminal is very close to VCC (or equal to it, depending on potentiometer structure). By

inference, the more fuel present inside the fuel tank the closer the voltage measured on the

sensor’s output (wiper).

For the project a linear behaviour of the float and the output of the sensor are assumed in

relation to the amount of fuel in the tank. Simply by measuring the voltage on the sensor’s

output is enough to calculate the remaining fuel in a tank of a known capacity.

CapacityTank Fuel
12

Result Conversion Channel ADCTankin Fuel ResolutionBit ADC ⋅
−

=

DE MSc dissertation Issue 1: 16/9/02 Page 3-28 Panagiotis Kenterlis

33..11..11..44.. FFuueell FFllooww MMeetteerr

A flow meter is a device that produces a

specific output when a specific amount of liquid

or gas flows through it. For our purposes, a flow

meter device for liquid fuel is assumed. There

are many different technologies used to

measure the quantity of fuel that flows through

the gauge. The technology used is not a subject

of this report.

Figure 3-4 Fuel Flow Meter Operation

For the report a typical flow meter with digital output (TTL) is assumed, this means that for

a given quantity of fuel having flowed through the meter, a pulse is generated on the output

of the flow meter device.

By accumulating the number of pulses received from the flow meter during the course of

time and multiplying with the amount of fuel flowing per pulse, the total fuel consumption of

the vehicle is calculated. Again by using the flow meter’s output pulses it is easy enough to

calculate the fuel consumption of the vehicle per distance measuring unit.

PulsePer Quantity FuelPulsesMeter FlownConsumptio Fuel Total
Finish Trip

Start Trip
⋅

= ∑

Although fuel consumption can be calculated by measuring the amount of time that the

injectors are on, the flow meter device is used instead, in order to simplify both hardware and

software design for the project at this stage. Of course as expected there is an increase in

cost, however by using a flow meter, the trip computer actually becomes independent of the

vehicle’s engine specifications and also prevents us from tampering with the ECU.

Had the fuel consumption information been acquired otherwise, much knowledge would be

required of at least the amount of fuel sprayed by an injector within a specific amount of time

and the number of injectors in the engine. In addition, a facility that allows counting the “ON”

time of the injectors is required. This solution although it allows to keep cost down, it adds

extra complexity to the project, which at this stage would not be possible to deal with, without

proper equipment and facilities.

DE MSc dissertation Issue 1: 16/9/02 Page 3-29 Panagiotis Kenterlis

33..11..22.. MMiiccrrooccoonnttrroolllleerr PPrreesseennttaattiioonn

Discussion on the hardware section of the project should fairly start with the heart of the

project, the Motorola MPC555 microcontroller.

The MPC555 is a very powerful 32bit microcontroller based on the PowerPC core with on-

chip floating point unit (FPU) targeted for the automotive industry. With a large amount of

FLASH program memory of 448Kbytes in total, it can store large programs as well as large

arrays of read-only data. It is equipped with 26Kbytes of internal SRAM, used for system

variables and other storage requirements.

The Unified System Interface Unit (see USIU p. 3-30, Ref. [6]) of the MPC555 is

responsible for controlling system start-up, system initialisation and operation, system

protection, system interrupt handling, and the external system bus. Two serial asynchronous,

one synchronous SPI and two CAN bus controllers constitute the microcontroller’s

communications facilities (see QMSCM p. 3-38 and TouCAN, Ref. [6]). The modular I/O

system (MIOS1) consists of a library of flexible I/O and timer functions including I/O port,

counters, input capture, output compare, pulse and period measurement, and PWM (see

MIOS1 p. 3-39, Ref. [6]). Two Queued Analogue-to-Digital Conversion modules are available

for interfacing analogue signals to the microcontroller (see QADC64 p. 3-36, Ref. [6]).

The strongest feature of the microcontroller however, is the Time Processor Unit, which is

a programmable microcontroller itself, which deals with time related functions (see TPU3 p.

3-40, Ref. [6]). Having two TPU modules the MPC555 can control almost any function.

6Kbytes of Dual Ported RAM can be used for TPU related operations.

All these functionalities combined with an internal clock frequency of 40MHz maximum;

make the MPC555 one of the most powerful microcontrollers available.

DE MSc dissertation Issue 1: 16/9/02 Page 3-30 Panagiotis Kenterlis

33..11..22..11.. UUssee ooff MMiiccrrooccoonnttrroolllleerr MMoodduulleess iinn tthhee PPrroojjeecctt // CCoonnffiigguurraattiioonn

•• UUSSIIUU –– UUnniiffiieedd SSyysstteemm IInntteerrffaaccee UUnniitt

The USIU, as already described, is a module that plays an important role in the operation

of the MPC555. It controls and coordinates various critical system functions, which include

the following:

o System configuration and protection: Controls the overall system configuration

and provides various monitors and timers, including the bus monitor, software

watchdog timer, periodic interrupt timer, PowerPC decrementer, time base, and real

time clock.

o Interrupt controller: Handles interrupt requests according to hard-coded priority and

masking. Both external and internal interrupt sources are supported.

o System reset monitoring and generation: Receives input from a number of reset

sources and takes appropriate actions, depending on the source.

o Clock synthesizer: Generates the clock signals used by the SIU as well as the other

modules and external devices.

o Power management: Various low-power modes are supported and configured for

use by the system.

o External bus interface (EBI) control: Handles the transfer of information between

the internal busses and the memory or peripherals in the external address space.

Also allows external devices to become bus masters.

o Memory controller: Provides a programmable glueless interface to various types of

external memory devices and peripherals. Four chip select pins are provided, with

programmable timing attributes and activation address range.

o Debug support: Provides an interface which allows testing and debugging of

programs by use of some external hardware and software running on a PC (see

Testing & Debugging Methods p. 5-91).

Those functions used in the project are analysed in the following pages.

DE MSc dissertation Issue 1: 16/9/02 Page 3-31 Panagiotis Kenterlis

oo CClloocckk SSyynntthheessiizzeerr

The CPU core, internal counter/timers and other facilities make use of clock signals that

are produced by the microcontroller’s internal circuits. System clocks can be configured to

have any of three clock sources, the external quartz crystal (4MHz or 20MHz), the internal

backup clock oscillator, and an external clock source connected to the EXTCLK pin. The

external clock source should have a frequency of 4MHz or the same as the desired system

frequency. These limitations exist due to the use of internal frequency division and

multiplication circuits.

For the purposes of this project, only the clock oscillator using an external quartz crystal at

4MHz was used as a clock source (main clock oscillator). This clock drives the System

Phase Lock Loop circuit, which acts as a programmable multiplier of 20

([] 21... ⋅+⋅= MFBPLPRCRUSIUSPLLSPLL inputoutput , where MF=9) generating an 80MHz clock,

which is next fed to a prescaler circuit and divided by a programmable divider of 2

(0000B.DFNLUSIU.SCCR. b=). The output of the prescaler, after amplified, is fed to the CPU

core as the main system clock (CPUf).

The main clock after being fed to a programmable prescaler (Divide by 4, or by 16), and

divided by 4 (0b0B.TBSUSIU.SCCR. =) and amplified, becomes the Time Base Clock, which

is used to clock the Decrementer. The main clock also drives another programmable

prescaler (Divide by 4, or by 256), which divides the clock signal by 256

(0b1B.RTDIVUSIU.SCCR. =) to generate a 15625Hz clock signal. This clock after

amplification is fed to the internal RTC and the Periodic Interrupt Timer.

Clock programming explanatory diagram is displayed in Figure 3-5 below (Ref. [6]).

Figure 3-5 Clock Control

DE MSc dissertation Issue 1: 16/9/02 Page 3-32 Panagiotis Kenterlis

oo IInntteerrrruupptt CCoonnffiigguurraattiioonn

The Interrupt Controller (Ref. [2]) on the microcontroller has been configured for two

external and three internal interrupt sources. Two more internal sources are configured but

not enabled. Every source is assigned a priority that is hardware coded but can be altered by

software to handle lower fixed priority sources first. External interrupt sources are hard-wired

to specific IRQ pins of the microcontroller. 0IRQ is a Non Maskable Interrupt (NMI) source

hence it cannot be blocked from generating an interrupt. 0IRQ should only be used by

external hardware to indicate a catastrophic system fault. In total there are 8 external

interrupt sources 70 IRQIRQ − and 32 internal interrupt sources 310 LEVELLEVEL − . Interrupt

sources with a small index number have higher priority. Internal interrupt sources

317 LEVELLEVEL − are mapped to USIU interrupt request level seven (7LEVEL). The

software must read the UIPEND register of the Inter-Module Bus (IMB) to determine the

actual source of the interrupt. SIVEC is a 32-bit register holds an 8-bit code representing the

unmasked interrupt source of the highest priority level.

Interrupt sources can be masked by clearing the corresponding bit on the System Interrupt

Mask Register (SIMASK). After having serviced an external interrupt source, it is important to

clear the interrupt flag bit in SIPEND, in order to clear the corresponding interrupt request

latch if a logic ‘0’ is no longer present on the pin. Clearing an interrupt request flag in SIPEND

is done by writing logic ‘1’ in the bit position of the interrupt source.

For the project, the interrupt sources and priorities shown in Table 3-1 were configured

and used.

Table 3-1 Interrupt Sources and Priorities
Priority*1 Interrupt Interrupt Source Enabled

0 Level 0 Internal RTC Yes
1*2 Level 1 TPU3_A Yes
2 1IRQ External RTC 0INT Yes

3 2IRQ External RTC 1INT Yes

4 Level 2 SCI Yes
5 Level 3 QSPI No
6 Level 4 QADC No

*1 Highest priority has smallest value. Lowest Priority has
largest value.

*2 Level 1 although actually of lowest hardware priority,
inside the ISR is handled before external interrupt
sources.

DE MSc dissertation Issue 1: 16/9/02 Page 3-33 Panagiotis Kenterlis

Fi
gu

re
 3

-6
 In

te
rr

up
t C

on
tr

ol
le

r

DE MSc dissertation Issue 1: 16/9/02 Page 3-34 Panagiotis Kenterlis

oo IInntteerrnnaall RReeaall TTiimmee CClloocckk

The internal RTC is a 32bit register/counter, accompanied by a 32bit Alarm register. The

external crystal of the development board supplies a clock frequency of 4MHz, which is then

divided internally by 256 (PITRTC Clock), and by 15625 by the internal RTC prescaler, which

finally provides a clock frequency of 1Hz to the RTC counter.

HzHz
Hz

1
15625

15625
15625

256
104

1=.B.MUSIU.RTCSC
1B.RTDIVUSIU.SCCR.

Frequency Crystal External

Clock RTC

6

==

⋅

===

A 32bit counter can count a total of 4,294,967,296 seconds, before overflowing and

starting again from zero, which is enough to record time for a total of 136 years.

For the project, the internal RTC is only used to provide an interrupt signal every second,

to record the elapsed trip time from a previous stop, as well as to support the tiredness

warning alarm. The internal RTC can be configured to enable interrupt generation every

second (USIU.RTCSC.B.SIE) and/or when the RTC counter matches the RTC Alarm register

(USIU.RTCSC.B.ALE).

The RTC Alarm register is programmed every time a trip is started or resumed to hold the

number of seconds for 3 hours (ondsondsshours sec800,10sec60min603 =⋅⋅), while the RTC

counter itself is reset to 0 seconds. When the contents of the RTC counter match the

contents of the RTC Alarm register, then an interrupt is generated with the alarm flag set

(USIU.RTCSC.B.ALR).

When a second has elapsed the Once-per-Second flag is set (USIU.RTCSC.B.SEC) and

an interrupt is requested if the interrupt condition has been enabled. Inside the interrupt

service routine (ISR) of the internal RTC all measurements and related calculations are

performed. If the source of the interrupt is an alarm match, then the tiredness warning alarm

window is called.

The internal RTC can be stopped and resumed at any time by clearing/setting the

USIU.RTCSC.B.RTE bit.

Internal RTC is assigned Interrupt Level 0, which has the highest priority from all other

internal interrupts. The source code functions that handle the internal RTC are included in the

Routines.c file.

DE MSc dissertation Issue 1: 16/9/02 Page 3-35 Panagiotis Kenterlis

oo DDeeccrreemmeenntteerr

The Decrementer is a 32bit timer/counter register configured by software to be clocked by

a signal with a time period of 1μsec. As it name implies, the register decrements its contents

at every clock pulse.

Inside the project the Decrementer is used to provide a basic time delay in multiples of a

Decrementer clock period (sec1TTMBCLK µ=). The delay function needs to initialise the

Decrementer with the number of periods to wait, start the Decrementer and wait in a check

loop until the contents have reached a terminating value (0).

However, since the Decrementer generates an exception when it underflows, an offset

value is added to the number of periods to wait, and it is this number that is used as the

terminating value. Termination of the check loop occurs when the Decrementer register’s

value is equal or less than the offset value. This is done in order to avoid the software

overhead of executing the exception handling routine every time the delay function is used.

However, if the software check snippet misses to identify that the requested number of

periods has been counted and the Decrementer underflows (if because of an exception or

interrupt being processed for too long) then the software check loop will not be aware of this

condition and will continue to count down causing a very long delay (232–offset μseconds).

This problem can be eliminated by including as well as with a minimum check, a check on

a global flag. If the Decrementer underflows, it will cause an exception, inside the service

routine of which, the global flag is set and that will force the check loop to terminate when the

exception service routine returns control to it. After that the Decrementer must be disabled to

prevent it from causing unwanted exceptions.

Source code functions to control the Decrementer can be found in the Routines.c file.

oo GGeenneerraall PPuurrppoossee II//OO

Pins primarily assigned for use as address, data and control bus can be configured for I/O

functions by programming registers SGPIO Data Register 1 (SGPIODT1), SGPIO Data

Register 2 (SGPIODT2) and SGPIO Control Register (SGPIOCR).

SGPIODT1 controls the I/O pins for the Data bus. SGPIODT2 controls I/O pins for the

address and control bus. SGPIOCR controls the data direction of these I/O pins. For the

external bus lines to be used as GPIO, the Single-Chip field (SC) on SIU Module

Configuration Register (USIU.SIUMCR) must be configured accordingly.

DE MSc dissertation Issue 1: 16/9/02 Page 3-36 Panagiotis Kenterlis

•• QQAADDCC –– QQuueeuueedd AADDCC

The MPC555 microcontroller embeds two QADC modules, for analogue signal interfacing

of 16 inputs each. A total of 32 analogue inputs are controlled by the two modules, which can

be increased to 82 channels by external multiplexing. The QADC module offers two queues

of 32 entries each (Queue 1 & 2) used for conversion commands and 64 result registers,

directly related with each other.

Every conversion command queue entry can control any of the 16 analogue input pins

associated with the module and order the conversion of the voltage present on the pin

defined by the command. The result of the conversion is stored in the conversion result word

queue in three formats (right-justified unsigned, left-justified unsigned, left-justified signed).

Figure 3-7 QADC_A Channel Connections

Both QADC modules have been configured to measure input voltages in the range of 0 to

5V by connecting voltage reference pins VRH (Reference High) and VRL (Reference Low) to

VCC (5V) and GND respectively (see Figure 3-7). Six power supply input pins are also

connected for analogue power supply (VDDA and VSSA), external digital power supply (VDDH

and VSSE) and internal digital power supply shared with other modules (VDD and VSS). The

reason for using different analogue and digital supply pins is to reduce the amount of noise

normally present in digital power supply pins. QADC conversion result has a 10bit resolution

DE MSc dissertation Issue 1: 16/9/02 Page 3-37 Panagiotis Kenterlis

and given an input signal with a voltage range 0-5V, then the voltage resolution is calculated

as being equal to mVVVVVV RLRH 89,4
1023
5

11024
05

1210 ≈=
−

−
=

−
− .

For the project, QADC_A is used with two of its analogue inputs connected to the In-Tank

Fuel Sensor (Channel Pin 0 – AN0) and the Battery Voltage divider (Channel Pin 1 – AN1).

Both these inputs are conditioned to give a voltage value in the range of 0 to 5V. Queue 1,

has been configured to operate in Periodic Timer Continuous Scan Mode with the maximum

possible scan period of 172⋅QCLK , where QCLK has been configured by prescaling to have

a period of sec1000,12540periodsclock IMB40 µ==⋅=⋅= nsnsQCLK , thus giving a scan

period of ms131072,131sec1217 ≈⋅=⋅ µQCLK . Two queue entries have been programmed to

control these two channels. Both channels are read every 131ms and their conversion results

are made available for use by the software. For software simplicity the data format used is

right-justified unsigned giving result values in the range 0x000-0x3FF (0-102310).

After executing the conversion commands for the two used channels, the third queue entry

containing an End of Queue command terminates Queue 1 and waits for the wait period to

elapse before restarting queue execution.

The voltage divider for the Battery Voltage input (see Figure 3-7) is used to condition the

voltage level and fit it in the range of 0-5V. To accommodate a real maximum voltage value

of 50V, a 1/10 divider is needed to provide to the QADC channel pin a maximum voltage

level of 5V. A potentiometer/trimmer is a practical way of achieving this, by setting the wiper

at 1/10 of the resistor’s value, e.g. for a 10KΩ trimmer, the wiper should be set at 1KΩ. One

terminal of the trimmer is connected to the battery voltage power line, the other to the ground

and the wiper to the QADC channel pin. The 1KΩ resistance value should be measured

between the QADC pin and the ground. Any battery voltage applied will be divided by ten

before being fed to the QADC for conversion. For example, by applying 42V as the battery

voltage (new automotive battery standard value) gives 4,2V in the QADC pin. This value can

then be multiplied in software by 10 to display the real value of the battery’s voltage.

Source code function that configures the QADC_A module can be found in the

QADC_Functions.c file.

DE MSc dissertation Issue 1: 16/9/02 Page 3-38 Panagiotis Kenterlis

•• QQSSMMCCMM –– QQuueeuueedd SSeerriiaall MMuullttii--CChhaannnneell MMoodduullee

The Queued Serial Multi-Channel Module of the microcontroller provides two

asynchronous serial ports (SCI, Serial Communication Interface) and one QSPI (Queued

Serial Peripheral Interface) port. Both SPI and the first SCI port are queued. This means that

a set of information can be written to or read from the port, without requiring constant

monitoring by software. The software will only have to transfer data when these are needed

to be sent or are available to read. The amount of information to send or accept before re-

involving the software is programmable.

For the project, all ports are used. The first SCI port is configured for operation at

115,200bps, 8 data bits, 1 stop bit and no parity bit. It is used to connect the trip computer to

a personal computer and upload data stored on the CF Card, as well as download

configuration information on the sensors used. Before connecting to the PC’s serial port, the

TTL voltage levels of the microcontroller’s serial port need to be translated to RS-232 voltage

levels. This voltage translation is performed by any RS-232 line driver/receiver.

The second SCI port is configured for operation at 19,200bps, 8 data bits, 1 stop bit and

no parity bit. It is used to control the VFD module for printing information on the display. All

commands and data are sent to the VFD and also some data can be read back from it.

The QSPI port is used to interface to the external RTC device at a speed of 500kbps

(clock speed of 500 kHz). For the external RTC only one peripheral select pin is used

(PCS0), out of the four available.

Although the queue facility could have been enabled for both the first SCI port and the

QSPI port, this was not done, firstly to allow different time delays between data transfers to

be inserted, and secondly, due to the need to verify whether a transfer has been successful

or not, before sending more data. Instead, software flow control is implemented for both

sending and receiving data from the communications module. Since most communication is

performed outside the ISR, inside which most calculations take place, there is little or no CPU

hogging because of executing wait loops to send or receive data.

Source code functions that control the SCI ports can be found in the SerialPort.c file.

Source code functions for the QSPI port can be found in the SPI_Functions.c file.

DE MSc dissertation Issue 1: 16/9/02 Page 3-39 Panagiotis Kenterlis

•• MMIIOOSS11 –– MMoodduullaarr IInnppuutt OOuuttppuutt SSyysstteemm

Although the MIOS1 module offers many features (see datasheet), only the 16-bit Parallel

Port I/O Sub-Module (MPIOSM) is used for the project. The I/O pins of the port are

programmed individually to support external peripherals as control pins.

By writing to the MPIOSM Data Direction Register (MPIOSMDDR), the data direction for

every can be individually assigned (Logic ‘1’=Output, Logic ‘0’=Input). By writing to or reading

from the MPIOSM Data Register (MPIOSMDR) the logic state of the I/O pins can be altered

or read.

I/O connections and data direction for every port pins are listed in Table 3-2.

Table 3-2 MIOS1 Parallel I/O Port Pin Connections
MIOS1

Pin
Data

Direction
Pin Connection

PIN15 I/O Cabin Temperature Sensor
PIN14 I/O Outside Temperature Sensor
PIN13 I/O Trailer ID network
PIN12 I/O Driver's ID probe
PIN11 O VFD Module Reset (/RESET)
PIN10 I VFD Module Busy (MB)
PIN09 O VFD Host Busy (HB)
PIN08 O Buzzer Control
PIN07 O Driver's ID probe LED
PIN06 - Not Used
PIN05 - Not Used
PIN04 - Not Used
PIN03 O CompactFlash /RESET
PIN02 O CompactFlash /CS0
PIN01 O CompactFlash /IOWR
PIN00 O CompactFlash /IORD

I – Pin has been configured for Input function.
O – Pin has been configured for Output function.
Pin numbering uses Little-Endian Format.

An individual I/O pin can be manipulated by using logic masking techniques when reading

from or writing to the data register. All functions used to control MIOS1 parallel I/O port are

found in the MIOS1_Functions.c file.

DE MSc dissertation Issue 1: 16/9/02 Page 3-40 Panagiotis Kenterlis

•• TTPPUU33 –– TTiimmee PPrroocceessssoorr UUnniitt

The Time Processor Unit version 3 (TPU3), is an intelligent programmable microcontroller

designed for timing control. The MPC555 contains two independent TPU3 modules. The

TPU3 module executes micro-instructions stored either in its own memory, which is

completely invisible to the CPU, or from the Dual-Port Memory on the MPC555 chip. In the

latter case, the TPU3 executes micro-instructions from RAM, which is no longer accessible

by the CPU. The TPU3 in this case is said to be operating in Emulation mode. The TPU3

module has 16 channels, where every channel can be thought of as being similar to a task

executed in a multitasking operating system. Every channel is assigned a function number

and a priority level by the CPU software. An internal scheduler engine distributes processing

time of the TPU3 execution engine to every channel according to its priority and status

(enabled/disabled). I/O operations can be executed by the channel’s selected function for the

corresponding I/O pin. Connecting two or more channels is also possible by use of shared

data space for inter-channel communication as long as the function executed by each

channel permits it. The most important feature of the TPU3 is its requirement for minimum to

zero CPU intervention in executing complex timing operations in real time by hardware.

The TPU3 module comes from Motorola with 16 pre-programmed functions in its

microcode ROM. A full list of these functions is found in Table 3-3, however it is likely that

some versions of the MPC555 may be shipped with other functions in the microcode ROM.

Table 3-3 TPU3 Microcode ROM Functions
Function
Number

Function
Nickname

Function Name

0xF PTA Programmable Time Accumulator
0xE QOM Queued Output Match
0xD TSM Table Stepper Motor
0xC FQM Frequency Measurement
0xB UART Universal Asynchronous Receiver/Transmitter
0xA NITC New Input Capture/Input Transition Counter
0x9 COMM Multiphase Motor Commutation
0x8 HALLD Hall Effect Decode
0x7 MCPWM Multi-Channel Pulse Width Modulation
0x6 FQD Fast Quadrature Decode
0x5 PPWA Period/Pulse Width Accumulator
0x4 OC Output Compare
0x3 PWM Pulse Width Modulation
0x2 DIO Discrete Input/Output
0x1 SPWM Synchronized Pulse Width Modulation
0x0 SIOP Serial Input/output Port

DE MSc dissertation Issue 1: 16/9/02 Page 3-41 Panagiotis Kenterlis

The TPU3 module was considered for use with the digital automotive sensors discussed

previously (Engine Speed, Road Speed and Fuel Flow meter), whose information lies in the

number of pulses generated by each of them.

Although for the purposes of the project, the Frequency Measurement (FQM) function

(Ref. [4]) would seem most appropriate; this function actually operates in a time-window of

specified duration. The reason for actually rejecting FQM is the fact that this time-window is

very small, while the required measurement period is that of one second. Although it would

be possible to use this function, in order to have correct values after a second has elapsed,

the number of counted pulses for every time-window should be accumulated. At the end of

every time-window an interrupt is generated and that could allow accumulating the pulses in

a system variable. However the large number of interrupts per second, hogs the CPU, due to

the need to save a number of registers to the stack every time the ISR is invoked and

restoring them after the ISR has terminated.

Instead, the Input Transition Counter function was used (NITC) (Ref. [7]). This function

allows the channel to act as a 16-bit pulse counter, which only generates an interrupt on

counter overflow. Since it is not expected to have signals of frequency more than 65,535Hz

(216 Hz) as input to the TPU3 channels, it is unlikely that an interrupt will be invoked.

However, should an input signal of frequency greater than 65,535Hz is applied to a channel

and an interrupt is generated, inside the ISR the number of pulses already counted will be

accumulated and used to sum the number of pulses in one second.

All channels used to interface to digital automotive sensors are configured to execute the

NITC function, with a maximum number of pulses to count before generating an interrupt set

to maximum (0xFFFF, 6553510). The first TPU3 module (TPU3_A) was used for the project

with three of its channels configured as explained above and as shown in Table 3-4 below.

Table 3-4 Use of TPU3_A Channels
Channel
Number

Priority
Level

Interrupt
Enabled

Connected Sensor

0 Medium Yes Engine Speed Sensor (G signal)
1 High Yes Road Speed Sensor (VSS)
2 High No Fuel Flow Meter

The time base of one second is provided by the internal RTC as an interrupt every second.

The TPU3_A module, as already shown in Table 3-1 has been assigned with interrupt

Level 1.

Source code functions to control the TPU3 modules and configure channels for the NITC

function can be found in the TPU3_Functions.c file.

DE MSc dissertation Issue 1: 16/9/02 Page 3-42 Panagiotis Kenterlis

33..11..33.. PPeerriipphheerraall DDeevviicceess

In the following pages, the use and configuration of peripheral devices in the project is

discussed.

33..11..33..11.. RReeaall TTiimmee CClloocckk

The external Real Time Clock is connected to the microcontroller through the SPI port (see

Figure 3-8). For the project development phase, the external RTC is connected to a

temperature compensating crystal oscillator with an output frequency of 32.768 kHz and a

3.6V NiMH rechargeable battery. The crystal oscillator provides the reference frequency,

which after a series of divisions inside the RTC chip, results to a frequency signal of 1Hz

used for controlling the time registers on the RTC. The NiMH rechargeable battery is used to

provide backup power supply for RTC functions and memory when the main power supply on

VCC pin has fallen below the voltage level of pin Vbat. Doing so, the RTC does not lose track

of time or corrupt the contents of its memory when power is removed. For this reason, the

RAM on the RTC is used as backup storage for various system variables and sensor

configuration parameters.

Figure 3-8 External RTC Connections

DE MSc dissertation Issue 1: 16/9/02 Page 3-43 Panagiotis Kenterlis

Please notice that only four I/O lines are required for SPI communication, SDI (Serial Data

Input), SDO (Serial Data Output), SCLK (Serial Clock) and CE (Chip Enable). Unlike most

devices the CE line is asserted when logic ‘1’ is present. Two interrupt lines, 0INT and 1INT ,

originating from the RTC are connected to 1IRQ and 2IRQ of the microcontroller,

respectively. Output pin 0INT / 1IRQ is controlled by Alarm0 facility on the RTC, which is

programmed to generate a low pulse on the pin every second (1Hz). Output pin 1INT / 2IRQ

is controlled by Alarm1 facility on the RTC and is programmed and enabled by GUI routines

to generate an interrupt when there is a match of the current time with the time value of the

Alarm1 registers.

Every function that needs to carry a timestamp, such as saving data on the CF card,

displaying time and date on the VFD, or displaying any other updated information on the

VFD, is related to the ISR of the external RTC. This is either done directly, by executing the

code inside the ISR, or indirectly, by setting a flag that will allow some code to be executed

when the ISR has terminated.

The DS1305 external RTC has 32 register addresses assigned to RTC related registers

and 96 bytes of RAM. These locations are accessed in different addresses for read and write

operation.

Table 3-5 External RTC's Registers and Address Map
Address

Read Write
Description

0x00 0x80 Seconds Register
0x01 0x81 Minutes Register
0x02 0x82 Hours Register
0x03 0x83 Day Register
0x04 0x84 Date Register
0x05 0x85 Month Register
0x06 0x86 Year Register
0x07 0x87 Alarm0 Seconds Register
0x08 0x88 Alarm0 Minutes Register
0x09 0x89 Alarm0 Hours Register
0x0A 0x8A Alarm0 Day Register
0x0B 0x8B Alarm1 Seconds Register
0x0C 0x8C Alarm1 Minutes Register
0x0D 0x8D Alarm1 Hours Register
0x0E 0x8E Alarm1 Day Register
0x0F 0x8F Control Register
0x10 0x90 Status Register
0x11 0x91 Trickle Charger Register

0x12-0x1F 0x92-0x9F Reserved
0x20-0x7F 0xA0-0xFF 96 Bytes RAM

DE MSc dissertation Issue 1: 16/9/02 Page 3-44 Panagiotis Kenterlis

The SPI port actually sends a 16bit word to the external RTC, comprising of one byte

indicating the register to be accessed and one byte of data. Data is sent always with MSB

first. When writing a byte, first the address of the register to write is sent and afterwards the

data to write (Figure 3-9). When the device is accessed for read operation then the data byte

has no meaning and its value is not important, however at the same clock ticks the data

contained in the register accessed are read from the SDO line (Figure 3-10).

Figure 3-9 SPI Single-Byte Write

Figure 3-10 SPI Single-Byte Read

Source code functions to control the external RTC device can be found in the ds1305.c

file. Source code functions to access the SPI port can be found in the SPI_Functions.c file.

DE MSc dissertation Issue 1: 16/9/02 Page 3-45 Panagiotis Kenterlis

33..11..33..22.. IInnffoorrmmaattiioonn DDiissppllaayy UUnniitt ((VVFFDD MMoodduullee))

Having decided on the type of display to use and searching even more carefully at the

available products and their prices, a specific VFD module was found that fitted the design

specifications and unexpectedly offered more than what was initially considered.

The Itron GU126x64F-K610A3-01 is a 126x64 graphics display module. It has two serial

ports, a synchronous (SPI) port and one CMOS full duplex asynchronous port, both of which

are available for use on the microcontroller and can save on connection wiring and PCB

space. A serial connection also allows for the display device to be placed away from the main

device and closer to the driver’s direct line of view. The module is powered by a transformer-

less power supply unit (PSU), therefore there is no need for extra space, cost and wiring for a

dedicated PSU. A standard 5V PSU capable of supplying 1.5-2A (7.5-10W) is enough to

supply power to the entire trip computer’s hardware circuits. The selected display module

also comes with an on-board 8 line I/O port, which can be useful especially if the device is

placed some distance away from the main device, for interfacing various circuits (see Data

Entry Unit (Keyboard) - 3.1.3.3 - p.3-47).

CON1

CON2
Figure 3-11 VFD Module Diagram

The asynchronous serial port and hardware flow control pins for it are found on the pins of

Connector 1. The SPI port pins, other control pins such as Reset and the I/O port are found

on the pins of Connector 2.

For the project, the asynchronous serial port connection to the microcontroller was

selected, to allow fewer connections, control on the status of the VFD controller (see function

of pins MB & HB) and less software overhead than the SPI functions. Connections to the

microcontroller can be seen in Figure 3-12.

DE MSc dissertation Issue 1: 16/9/02 Page 3-46 Panagiotis Kenterlis

Figure 3-12 VFD Connections to the Microcontroller

The controller on the VFD module can execute various functions, such as print text in 4

different ASCII font sizes (5x5, 5x7, 10x14 and 20x28 pixels), display bitmapped graphics,

set/clear display regions, set display brightness, power on/off the module and handle the on-

module I/O port. All these functions were used to create a Graphics User Interface (GUI), for

the driver to interact in a more friendly and productive manner with the trip computer.

Source code functions used to control the VFD module and the type of information

displayed on it can be found in the VFD_Functions.c file.

DE MSc dissertation Issue 1: 16/9/02 Page 3-47 Panagiotis Kenterlis

33..11..33..33.. DDaattaa EEnnttrryy UUnniitt ((KKeeyybbooaarrdd))

The keyboard used for entering data, as well as navigation through the Graphics User

Interface, follows the form of a standard 4x4 matrix keyboard, giving a total of 16 keys.

Because of its form, identifying a key press requires well defined steps and techniques.

1 2 3 A

4 5 6 B

7 8 9 C

* 0 # D

Figure 3-13 Keyboard Layout

 1 2 3 A

4 5 6 B

7 8 9 C

* 0 # D

Row 1

Row 2

Row 3

Row 4

Col 1 Col 2 Col 3 Col 4
Figure 3-14 Matrix Layout

Reading the value of a pressed key is achieved by matrix scanning techniques. Since the

keyboard uses a 4x4 matrix, it requires 8 I/O lines in total for scanning the state of the key-

switches. These I/O lines are taken from the I/O port of the VFD module and are serially

controlled by the microcontroller, although using the same concepts as if being connected to

any parallel I/O port of the microcontroller. The I/O port on the VFD module can be

programmed to have any pin configured as either Input or Output, by writing a logic ‘1’ (Input)

or logic ‘0’ (Output) at the respective bit position.

The VFD module can be programmed to identify a change in the logic value of its input pins

and send its I/O port value to the microcontroller through either of the serial interfaces

available on it. Once this byte has been received by the microcontroller, an interrupt is

generated, which in turn will activate the keyboard scanning function to identify the key

pressed.

Since TTL and CMOS circuits assume the logic state of an input as logic ‘1’ if floating, logic

‘0’ is the dominate logic state. By writing a logic ‘0’ at the pin controlling a row, and pressing

any of the keys connected to that row, a circuit will close transferring the GND voltage (logic

‘0’) to the column’s line of the pressed key. Simply by moving a logic ‘0’ value at the scan

lines (rows) and reading the result on the return lines (columns) and by use of a look-up

table, the value of the key that was pressed can be derived.

DE MSc dissertation Issue 1: 16/9/02 Page 3-48 Panagiotis Kenterlis

The electrical connections of the matrix keyboard with the I/O port of the VFD module are

displayed on the following diagram.

O O O O I I I I

P7 P6 P5 P4 P3 P2 P1 P0

Col 1
Col 2
Col 3
Col 4

Row 1
Row 2
Row 3
Row 4

MSB LSB

Figure 3-15 Keyboard I/O Connections

To scan the key matrix, the following Scan Patterns need to be outputted on the Scan

Lines. The logic value ‘1’ on the Column bits has no real meaning because it is not presented

on the input pins, however it is used for compatibility purposes to the original program. It is

worth noting that the moving ‘0’ activates only the keys connected to it.

Table 3-6 Keyboard Row Scan Pattern Codes
C4 C3 C2 C1 R1 R2 R3 R4 Scan Line P7 P6 P5 P4 P3 P2 P1 P0

Scan Code
(Hex)

1st Row 1 1 1 1 0 1 1 1 0xF7
2nd Row 1 1 1 1 1 0 1 1 0xFΒ
3rd Row 1 1 1 1 1 1 0 1 0xFD
4th Row 1 1 1 1 1 1 1 0 0xFE

After reading the contents of the keyboard’s I/O port, using a bit mask of 0xF0 and AND-

ing the values, in order to mask the scan pattern code nibble. If a bit ‘0’ is found in any of the

return line bit positions, then the key-switch in that row has been pressed. If no logic ‘0’ is

found in any return lines, then no key-switch has been pressed.

Table 3-7 Keyboard Column Scan Return Codes
C4 C3 C2 C1 R1 R2 R3 R4 Return Line
P7 P6 P5 P4 P3 P2 P1 P0

Return Code
(Hex)

Idle 1 1 1 1 0 0 0 0 0xF0
1st Column 1 1 1 0 0 0 0 0 0xE0
2nd Column 1 1 0 1 0 0 0 0 0xD0
3rd Column 1 0 1 1 0 0 0 0 0xB0
4th Column 0 1 1 1 0 0 0 0 0x70

DE MSc dissertation Issue 1: 16/9/02 Page 3-49 Panagiotis Kenterlis

The information given be the previous two arrays, are combined using a look-up table

technique, with which we it is possible to decode the coordinates of the pressed key into any

desired coding system.

For the project, and in order to make programming and debugging easier, the direct

conversion to the ASCII code of the legend on the pressed key was selected.

Table 3-8 Pressed Key Lookup Table
Return Lines Scan Lines

1st Column 2nd Column 3rd Column 4th Column
1st Row 1 2 3 A
2nd Row 4 5 6 B
3rd Row 7 8 9 C
4th Row * 0 # D

Keys ‘*’ (Asterisk) and ‘#’ (Hash) are used for confirming (ENTER) or aborting (CANCEL)

operations of the Graphics User Interface.

Keys ‘1’, ‘2’ and ‘3’ are used for selecting one of the three categories of information

available “Vehicle Information”, “Trip Information” and “Clock/Calendar”, respectively.

Keys ‘A’ to ‘D’ are used to select sub-functions or information sub-pages of the currently

selected information category (see above).

Key ‘5’ is used to configure the brightness of the display from 25% to 100% in increments

of 25%.

Keys ‘7’ and ‘9’ are used for “DECREASE/YES OPTION” and “INCREASE/NO OPTION”

respectively, according to the type of selection to be made.

Key ‘0’ is used to switch on and off the display when it is required by the driver.

The above keyboard related arrays and the key scan function are included in the

keyboard.c file.

DE MSc dissertation Issue 1: 16/9/02 Page 3-50 Panagiotis Kenterlis

33..11..33..44.. SSttoorraaggee DDeevviiccee ((CCoommppaaccttFFllaasshh CCaarrdd))

The CompactFlash card is a small, removable, storage and I/O card. Originally invented by

SanDisk Corporation, the specifications are now determined by the CompactFlash

Association (CFA) (http://www.compactflash.org), a non-profit corporation that promotes the

adoption of CompactFlash. CompactFlash cards are a widely available solution for systems

requiring a compact, solid state mass storage system. CompactFlash can be used in such

applications as portable and desktop computers, digital cameras, handheld data collection

scanners, personal digital assistants (PDAs), Pocket PCs, handy terminals, personal

communicators, audio recorders, monitoring devices, set-top boxes, and networking

equipment.

CompactFlash is essentially a small form factor card version of PCMCIA’s PC Card ATA

(AT Attachment) specification and includes a True IDE (Integrated Drive Electronics) mode

which is compatible with the ATA/ATAPI-4 specification. There are 3 distinct interface modes

that a CompactFlash card can use:

o PC Card Memory Mode (uses WE , OE to access memory locations)

o PC Card I/O Mode (uses IOWR , IORD to access I/O locations)

o True IDE Mode (uses IOWR , IORD to access I/O locations)

The CompactFlash card is essentially a solid state ATA disk drive. To control an ATA disk

drive, one writes to the task file registers. The values put into these task file registers control

the drive (the ANSI T13 committee defines these registers and the commands used to control

all ATA/IDE drives — see http://www.t13.org) (Ref. [3]). These task file registers can be

mapped into either memory or I/O address space.

Wanting to avoid the use of an external PCMCIA controller or glue logic to a

CompactFlash card, the True IDE mode was selected during the project design phase. The

main disadvantage is that hot insertion and removal (while the device is still working) will not

be possible because of the probable disruption of signals on the system bus; however the CF

Card according to the specifications, is meant to be constantly mounted on the trip computer,

and only removed for replacement.

The main reason that the True IDE mode is easier to use, is because only CE1 needs to

be asserted, in order to perform a 16 bit read or write to the data register. To perform a 16 bit

DE MSc dissertation Issue 1: 16/9/02 Page 3-51 Panagiotis Kenterlis

read or write operation in PC Card mode, both CE1 and CE2 must be asserted

simultaneously which generally requires some custom glue logic.

Table 3-9 AT Task Files (True IDE mode)
/CE2 /CE1 Addr. Read (-IORD = L) Write (-IOWR = L) LBA Mode

1 0 0h Data Register (16 bit) Data Register (16 bit)
1 0 1h Error Register Feature Register
1 0 2h Sector Count Register Sector Count Register

1 0 3h Sector Number Register Sector Number Register Lower Byte
1 0 4h Cylinder Low Register Cylinder Low Register Low Middle Byte
1 0 5h Cylinder High Register Cylinder High Register Upper Middle Byte
1 0 6h Drive Head Register Drive Head Register Upper Nibble Byte
1 0 7h Status Register Command Register
0 1 6h Alt. Status Register Device Control Register
0 1 7h Drive Address Register Reserved

Using the microcontroller’s external memory controller (external address, data and control

bus) to interface the CF Card would violate the CF Card’s timing. To avoid this problem, the

same data and address lines were used as General Purpose I/O lines. Data lines D0-15 (Big-

Endian) are connected to the CF Card’s D15-0 (Little-Endian) and address lines D28-30 of

the microcontroller (Big-Endian) are connected to the CF Card’s A2-0 (Little-Endian). MIOS1

16bit I/O port pins are used for connection to the CF Card’s control pins. For detailed

connections see Table 3-10. Access to the CF Card is done by emulating the address, data

and control bus with the General Purpose I/O lines.

DE MSc dissertation Issue 1: 16/9/02 Page 3-52 Panagiotis Kenterlis

Table 3-10 CompactFlash Connections to the microcontroller
MCU ATA CompactFlash
Power GND 40 Power GND 1 Power GND
D12 – SGPIOD12 11 D3 2 D3
D11 – SGPIOD11 9 D4 3 D4
D10 – SGPIOD10 7 D5 4 D5
D9 – SGPIOD9 5 D6 5 D6
D8 – SGPIOD8 3 D7 6 D7
MIOS1 PIN2 38 /CS0 7 /CE1

Not Connected 8 A10
Power GND 9 /ATA SEL

10 A9
11 A8

Not Connected

12 A7
Power VCC 13 Power VCC

14 A6
15 A5
16 A4

Not Connected

17 A3
A28 – SGPIO28 36 A2 18 A2
A29 – SGPIO29 33 A1 19 A1
A30 – SGPIOA30 35 A0 20 A0
D15 – SGPIOD15 17 D0 21 D0
D14 – SGPIOD14 15 D1 22 D1
D13 – SGPIOD13 13 D2 23 D2
Not Connected 32 /IOCS16 24 /IOCS16

25 /CD1 Not Connected
26 /CD2

D4 – SGPIOD4 10 D11 27 D11
D3 – SGPIOD3 12 D12 28 D12
D2 – SGPIOD2 14 D13 29 D13
D1 – SGPIOD1 16 D14 30 D14
D0 – SGPIOD0 18 D15 31 D15
Power Vcc 38 /CS1 32 /CE2

Not Connected 33 /VS1
MIOS1 PIN0 25 /IORD 34 /IORD
MIOS1 PIN1 23 /IOWR 35 /IOWR

Power Vcc 36 /WE
 31 INTRQ 37 INTRQ

Power VCC 38 Power VCC
Power GND 39 /CSEL

Not Connected 40 /VS2
MIOS1 PIN3 1 /RESET 41 /RESET
Not Connected 27 IORDY 42 IORDY

Not Connected 43 /INPACK
Power VCC 44 /REG

39 /DASP 45 /DASP Not Connected
34 /PDIAG 46 /PDIAG

D7 – SGPIOD7 4 D8 47 D8
D6 – SGPIOD6 6 D9 48 D9
D5 – SGPIOD5 8 D10 49 D10

Power GND 50 Power GND

DE MSc dissertation Issue 1: 16/9/02 Page 3-53 Panagiotis Kenterlis

33..11..33..55.. DDiiggiittaall IIddeennttiiffiiccaattiioonn DDeevviicceess

To provide the means of

identifying different drivers and

trailers, the iButton devices

manufactured by Dallas/Maxim

were selected and more specifically

DS1990A.

This is a read-only memory

circuit, containing a unique serial

number of 64bits. The uniqueness

of the serial number is guaranteed

by the manufacturer by use of laser

recording the number on the

memory circuit.

Figure 3-16 iButton Container Dimensions

It is distributed in a F5 MICROCAN container, with dimensions shown on the above figure.

It has two connection terminals to the reader circuit marked as DATA and GROUND. It is

noteworthy that a power supply terminal is absent. Power supply and data transfer are two

issues handled by a proprietary bus (designed by Dallas Semiconductors), named MicroLan

and is administrated by the 1-Wire protocol. This bus allows supplying a device with positive

voltage and transferring data both over a single wire, while a grounding wire is also required.

The DATA terminal can be connected to a microcontroller’s open collector I/O pin like shown

in the following diagram. The pull up resistor is required to supply the device with current.

Figure 3-17 iButton connection to a microcontroller

DE MSc dissertation Issue 1: 16/9/02 Page 3-54 Panagiotis Kenterlis

Reading data of the device can only be successful if appropriate timings and rules that the

1-Wire protocol defines are followed. The data to be read from the specific part (DS1990A)

are sectioned in 8bits being dedicated for definition of device family that the part belongs to

(value 0x01 for DS1990A), 48bits containing the unique serial number and 8 more bits

containing the CRC (Cyclic Redundancy Check) value of the previous 56bits. By using a

CRC algorithm, the recognition of the family code and the serial number is not corrupted by

read errors. The CRC byte is calculated by the CRC polynomial 1458 +++ xxx . To confirm

the integrity of transferred data, it is required from the microcontroller’s side to calculate the

CRC polynomial on the data read from the iButton and compare the result with the read CRC

byte. If these two values match then data transfer was error-free.

Figure 3-18 iButton ROM Code

The metallic container of the device protects the IC from dust, mechanical strain and

humidity. It operates in a wide range of environment temperatures (-40oC to +85oC). In

addition, the device container permits reading the device by use of a two-terminal socket,

without the need of special hardware reader.

An iButton mounted on a key ring can be used to identify the driver of the vehicle, while

many can be used to identify the connected trailer.

•• CCoonnnneeccttiioonn ttoo tthhee MMiiccrrooccoonnttrroolllleerr

The iButton device is connected to the microcontroller using one I/O pin of the MIOS1

Digital I/O port. Different pins are assigned for the buses to operate, the driver’s ID bus

(MIOS1 PIN12) and the trailers’ ID bus (MIOS1 PIN13).

•• CCoommmmuunniiccaattiioonn IInniittiiaalliissaattiioonn

After connecting the iButton to the 1-Wire bus, it will draw current from the DATA terminal.

The iButton then generates a presence pulse in the form of logic ‘0’ (low voltage). The first

action that the bus master (microcontroller) must take is to execute a Master Reset Pulse

DE MSc dissertation Issue 1: 16/9/02 Page 3-55 Panagiotis Kenterlis

which is effectively done by pulling the DATA line to ground. After that the iButton responds

with another presence pulse.

After executing this procedure the iButton can be accessed. If only one 1-Wire device is

connected on the bus, then in order to access it is first needed to read its ROM code. If more

devices than one are connected on the bus, then before doing anything else, the ROM code

of every device must be identified. For doing so a search algorithm must be followed, which

will allow to read the ROM code of one device while the rest remain “silent” on the bus. If this

procedure is not followed then all devices will try to respond to a command issued by the bus

master and the data read will be corrupted.

•• RReeaaddiinngg tthhee iiBBuuttttoonn

The 1-Wire protocol defines three different bus access slots: the Logic ‘1’ Write slot, the

Logic ‘0’ Write slot and the Bit Read slot. Every one of them is strictly defined by a set of time

spaces, within which the logic level of the DATA line must change state, in order to correctly

signal the above mentioned slots. With the termination of the initialisation slot, the DS1990A

enters idle state waiting for a command. After the transmission of a command has been

completed, the device executes it and returns the results to the bus master. Complete read of

the ROM code of a device is performed in less than 5ms, if standard timings are followed.

Detection, identification and reading of the device are operations performed by functions

included in the OneWire.c file. The multi-drop device search and CRC calculation are

modified functions of the code offered freely by the manufacturer company.

•• iiBBuuttttoonn OOvveerrvviieeww

Altogether the reasons for selecting the specific range of products are:

 Unique 64bit serial number

 Communications error detection capability

 Use of two wires for basic communications

 Simple communications protocols

 Direct connection to the microcontroller

 High endurance to harsh environments

 Low cost - Minimum to zero maintenance cost

DE MSc dissertation Issue 1: 16/9/02 Page 3-56 Panagiotis Kenterlis

33..11..33..66.. TTeemmppeerraattuurree SSeennssiinngg DDeevviicceess

For the purpose of displaying the cabin and outside temperature, two temperature sensor

devices are used. These are the DS1820 device by Dallas/Maxim. This part is found in two

variants, the DS18B20 and the DS18S20. The DS18B20 variant provides programmable

temperature conversion resolution from 9bits (0.5οC) to 12bits (0.0625οC) and maximum

conversion time of 93.75ms in 9bit mode and 750ms in 12bit mode. The DS18S20 variant

provides a fixed temperature conversion resolution of 9bits (0.5οC) and maximum conversion

time of 750ms. Both these variants are supported by the microcontroller’s software, however,

for the project the DS18B20 variant was used and will be analysed henceforth.

DS18B20 uses the same communications interface as the digital identification key

DS1990A discussed in previous pages. In fact, DS18B20 is accessed the same way as

DS1990A with the addition of an array of nine byte registers, which are read successively.

This array is called the Scratchpad memory. In the first two registers of the Scratchpad, the

temperature conversion result is stored after a conversion has finished. In the third and fourth

registers, two values TH and TL are stored which are used to trigger an alarm condition when

the converted temperature is outside the range these two values define

HL TeTemperaturT ≤< . For the project’s purposes, since there is no need for controlling other

hardware, the values are set to the highest and lowest measurable temperature values

respectively, in order to prevent the thermometer from entering the alarm condition. In the

fifth register of the Scratchpad memory, a configuration byte is stored. This byte code defines

the thermometer resolution of the DS18B20 device in bits. The DS18B20 device is also

equipped with a small EEPROM memory, which is used to save the configuration register

and the two trigger registers. Special commands are used to read from and write to the

Scratchpad memory, as well as store changed trigger register and configuration register in

the EEPROM. The ninth register of the Scratchpad memory contains the CRC8 value of the

previous eight registers.

Since there is no real need for high precision in temperature measurements, the DS18B20

device is configured for 9bit (0.5οC) resolution. Every time the device’s scratchpad is read, a

check is made for its Configuration byte. If it doesn’t match the 9bit Resolution code, then the

device is re-programmed. This will happen only the first time a new sensor is connected, so,

replacing a defective part is an easy procedure and doesn’t require any other procedures to

be followed. In the case of a DS18S20 device, such operations are not performed. The

DE MSc dissertation Issue 1: 16/9/02 Page 3-57 Panagiotis Kenterlis

DS18B20 variant can perform a conversion at least 7.5 times faster than the DS18S20,

allowing more time to be spent for other system operations.

Before acquiring thermometer information, a Conversion Start command must be sent to

the sensor, after this has been uniquely selected. Since two sensors are used, every sensor

must receive this command. After both sensors have been put to Conversion mode, the

microcontroller has to wait for the required amount of time for the conversion to finish. Since

the software must support both variants, a check is made to identify the type of the attached

variants and the conversion delay is adjusted to fit the slowest device. If both devices are

DS18B20 variants, then the conversion wait time is set to 100ms, while if at least one of the

devices is a DS18S20 variant then the wait time is set to 750ms (see variant specifications).

Once the temperature conversion result has been read and processed as required, it can be

displayed on the VFD.

In order to avoid programming of the trip computer to uniquely identify a specific

temperature sensor on a common 1-Wire bus as being used as outside/cabin temperature

sensor, which would require special configuration of the trip computer, two different 1-Wire

buses are used. Each bus connects directly to only one sensor, so selecting and sending

commands to a device is very easy. Since the only requirement to create a stand-alone 1-

Wire bus is dedicating an I/O pin this solution doesn’t increase product cost. The temperature

sensor for the outside environment is connected on PIN15 of MIOS1, while the cabin

temperature on PIN14. A connection diagram of temperature sensors to the microcontroller

can be seen in Figure 3-19.

Figure 3-19 Temperature Sensor Connections to the Microcontroller

Source code functions controlling both variants of DS1820 temperature sensor device can

be found in the ds1820.c file.

DE MSc dissertation Issue 1: 16/9/02 Page 3-58 Panagiotis Kenterlis

33..11..33..77.. OOtthheerr CCiirrccuuiittss

•• BBuuzzzzeerr CCoonnttrrooll

To increase the usability of the User Interface, an audio warning capability was added. The

purpose for doing so, was to warn the driver for errors created, completion of a process,

selection of a GUI function and warnings such as activation of the alarm clock and the

tiredness warning alarm.

The circuit used is very simple since it uses only a PNP transistor and a current limiting

resistor of 1KΩ. Depending on the hfe of the transistor and the current it sinks, a resistor of

different value may need to be connected. Control of the buzzer is achieved by connecting

the base of the transistor (through the resistor) to an I/O port pin of the microcontroller

(MIOS1 PIN8). In order to activate the buzzer, a logic value of ‘0’ must be written on the I/O

pin. Respectively logic ‘1’ on the I/O pin will deactivate the buzzer.

Figure 3-20 Buzzer Control

Functions controlling the buzzer device can be found in the Routines.c source file.

DE MSc dissertation Issue 1: 16/9/02 Page 3-59 Panagiotis Kenterlis

33..22.. SSooffttwwaarree DDeessiiggnn

33..22..11.. DDeevveellooppmmeenntt TToooollss UUsseedd

•• MMeettrroowweerrkkss CCooddeeWWaarrrriioorr 66..00

To develop the resident software on the microcontroller, the Metrowerks CodeWarrior v6.0

Integrated Development Environment (IDE) was used. This is a software development suite

including a C/C++ compiler, Assembler and Emulator/Debugger facilities for Embedded

Systems based on Motorola’s PowerPC core microcontrollers, such as the MPC555.

Figure 3-21 Metrowerks CodeWarrior IDE Main Interface

DE MSc dissertation Issue 1: 16/9/02 Page 3-60 Panagiotis Kenterlis

•• MMiiccrroossoofftt VViissuuaall BBaassiicc 66..00

The Microsoft Visual Basic development system is a tool for creating software solutions for

Windows (Figure 3-22). Being a visual tool, it allows building a user interface with a few

mouse movements and linking code with objects, events and processes. Visual Basic was

used to build the PC software which controls the trip computer device. Since Visual Basic is a

standard programming Windows tool and no special configuration was performed, presenting

it is not within the scope of this report, so no discussion on using Visual Basic will follow.

Figure 3-22 Microsoft Visual Basic 6.0 Programming Environment

DE MSc dissertation Issue 1: 16/9/02 Page 3-61 Panagiotis Kenterlis

33..22..11..11.. MMeettrroowweerrkkss CCooddeeWWaarrrriioorr RReeggiissttrraattiioonn IIssssuueess

Before starting to use the IDE, there is need to register the software with the

manufacturing company. This is done in steps.

Firstly the Product Registration utility that comes installed at the same program folder as

the executable files, needs to be executed. Once this is done the following window will

appear with all fields blank.

Figure 3-23 Metrowerks CodeWarrior Registration Utility

After providing all the required information (name, university, contact email, etc) and

pressing the “Register” button, a file is created with the name MWRegistration.txt, that

contains all the above information, plus some information linked to the machine that the

software will be used, such as volume ID of the hard disk drive. This file should then be sent

by electronic mail to license@metrowerks.com to register the product. In reply, another file

will be sent after a short period of confirmation (could be a few days actually).

Once this file has been received, its contents should be copied to the clipboard and then

pasted to replace the contents of the license.dat file found in the top directory of the

installation path.

Once this is done, the full features of the software are available to use.

DE MSc dissertation Issue 1: 16/9/02 Page 3-62 Panagiotis Kenterlis

33..22..11..22.. UUssiinngg tthhee MMeettrroowweerrkkss CCooddeeWWaarrrriioorr IIDDEE

The programming environment of CodeWarrior is simple and resembles those of other

Windows based programming languages.

A software upgrade to version 6.03 was available at the time the development phase was

starting, which provided some stationery for the AXIOM development boards, however these

were not specific to the board used and some configuration settings needed to be edited

(Chapter 3.2.1.3, p. 3-66).

Developed programs are handled in projects. Every project is associated with some

source files. To create a new project, select File>New and the window in Figure 3-24 will

appear. In this window, firstly the EPPC Stationery Wizard needs to be selected, which helps

us configure the project by asking simple questions and requiring selection from a number of

options. Afterwards the name and work path of the project needs to be entered.

Figure 3-24 Project Creation #1

DE MSc dissertation Issue 1: 16/9/02 Page 3-63 Panagiotis Kenterlis

The wizard will start asking questions concerning the project to set up. The microcontroller

development board used is manufactured by AXIOM and the processor is the PowerPC 555.

Figure 3-25 Project Creation #2

The programming language is set up on the next window (Figure 3-26). For the purposes

of the project, the C compiler is used.

Figure 3-26 Project Creation #3

DE MSc dissertation Issue 1: 16/9/02 Page 3-64 Panagiotis Kenterlis

One important feature of the microcontroller is the on-chip FPU, which should be enabled

next (Figure 3-27) in order to speed up calculations that operate on floating point numbers.

Figure 3-27 Project Creation #4

The external hardware debugger interface should be selected next (Figure 3-28) to be

used when debugging the software (see Chapter 5-Testing & Debugging, p. 5-91).

DE MSc dissertation Issue 1: 16/9/02 Page 3-65 Panagiotis Kenterlis

Figure 3-28 Project Creation #5

Pressing the Finish button, the wizard starts creating a sample project configured as

selected previously. After this process has ended, the project manager window appears with

some source files divided in groups.

Figure 3-29 Project Manager Window

DE MSc dissertation Issue 1: 16/9/02 Page 3-66 Panagiotis Kenterlis

Figure 3-30 Project Menu

Source code files can be shared by many

projects, to increase code reusability.

From the Project menu (Figure 3-30), it is

easy to identify some functions available to the

user.

Adding files to a project, creating a group of

files, compiling the project, disassembling and

debugging (see Chapter 5-Testing &

Debugging, p. 5-91) the generated code, are

the most frequently used functions.

33..22..11..33.. CCoonnffiigguurriinngg tthhee MMeettrroowweerrkkss CCooddeeWWaarrrriioorr IIDDEE

The IDE allows the user to have multiple build targets for the same code being developed.

Each build target in a CodeWarrior project has its own settings. These settings control a

variety of features such as compiler options, linker output, error and warning messages, and

remote debugging options (Ref. [9]).

By using the stationery provided, three target versions are available, Debug, ROM and

Auto-FLASH.

For the project’s purposes, only the first two were used and will be analysed in more detail

next. The currently active target can be changed from the drop down menu in the project

management window.

DE MSc dissertation Issue 1: 16/9/02 Page 3-67 Panagiotis Kenterlis

Figure 3-31 Target Selection

Current target settings can be changed from Edit>”Target’s Name” Settings as shown in

Figure 3-32 below.

Figure 3-32 Target Settings

DE MSc dissertation Issue 1: 16/9/02 Page 3-68 Panagiotis Kenterlis

•• DDeebbuugg VVeerrssiioonn

The Debug version of the firmware code originates at address 0x003FA000, which is the

start address of the internal SRAM memory. The stack pointer is set to 0x00400000 and

decrements when data is pushed. Data is also stored at the same region as the code and the

stack (0x003FA000-0x00400000). Using the Debug target, the Metrowerks CodeWarrior IDE

can download compiled code to the microcontroller’s RAM memory and execute it like an In-

Circuit Emulator (ICE) (see Testing & Debugging p. 5-91). For the Debug Version target

settings see Figure 3-33 below.

Figure 3-33 Debug Version Settings

Figure 3-34 Debug Target Memory Map

DE MSc dissertation Issue 1: 16/9/02 Page 3-69 Panagiotis Kenterlis

Figure 3-35 IDE Preferences Menu

In order to use the Metrowerks CodeWarrior

IDE as a debugger tool, the external debugging

hardware interface needs to be connected and

configured. This is done by selecting the menu

Edit>Preferences as shown in Figure 3-35.

On the window that opens (Figure 3-36), the

MSI Wiggler, which was available for the project

together with the Axiom development board,

needs to be selected and the configuration file

for target setup should point to the configuration

script file 555_AXIOM_flash_init.cfg (Appendix

2), which is included in the source files directory.

The rest of settings mainly involve how the IDE is displayed and are of no interest to this

project. One should configure the IDE according to his/her own preference.

Figure 3-36 IDE Preferences

DE MSc dissertation Issue 1: 16/9/02 Page 3-70 Panagiotis Kenterlis

•• RROOMM VVeerrssiioonn

The ROM version compiles a ROM image of both code and data according to the settings

provided for the target. These settings are contained in the 555_Axiom_ROM.lcf file

(Appendix 1) included in the source files directory.

The ROM image originates at address 0x00010000, which is the start address of the

internal FLASH memory available for use, since the previous 64Kbytes are used by the

monitor program provided by the development board’s manufacturer.

The memory region (0x00010000- 0x0006FFFF) is used to store an image of both code

and data. On execution of the code in this region the contents of the data segment are copied

from the FLASH to the SRAM. The target start address for the data segment is that of the

SRAM memory (0x003FA000-0x003FFFFF).

The stack pointer is set to the end of the Dual Ported TPU RAM (DPTRAM), at address

0x00303800 and decrements when data is pushed. The entire 6Kbytes region of the

DPTRAM (0x00302000-0x003037FF) is assigned for use by the stack.

Figure 3-37 ROM Version Settings

The memory map for the ROM target is shown in Figure 3-38.

DE MSc dissertation Issue 1: 16/9/02 Page 3-71 Panagiotis Kenterlis

Figure 3-38 ROM Target Memory Map

•• AAuuttoo--FFllaasshh

This target uses the ROM image created in ROM target. It utilizes RAM memory as buffer

to execute a FLASH burning program, download the ROM image and burn in to FLASH by

using the debugger hardware (MSI Wiggler) and software (Metrowerks CodeWarrior). Since

the development board already contained a monitor program that allowed programming of

the FLASH memory, this target was not employed.

For all targets discussed the rest of settings can be configured to produce faster/smaller

code, to allow easier debugging, configure the behaviour of the compiler, etc, and they are

not analysed because some experimentation may be needed to produce compiled code of

desired attributes.

DE MSc dissertation Issue 1: 16/9/02 Page 3-72 Panagiotis Kenterlis

33..22..22.. MMiiccrrooccoonnttrroolllleerr FFiirrmmwwaarree CCooddee EExxppllaannaattiioonn

Building a real-time system can be a very tedious and complex job. Careful thought is

required when writing functions that are time-critical, and priority needs to be assigned to

them. In order to prevent some functions from hogging the CPU and losing timing of some

events which could prove catastrophic, all functions that may introduce delays and dead-

times in code execution have been removed from ISRs. The ISRs set flags that are used

after termination to initiate processes when the processor hasn’t received and interrupt

request. That way, all GUI related functions are executed outside ISRs, inside which only

time critical processes and calculations are performed. In addition, by designing the software

in this manner, the processor is more efficiently dedicated to executing real code, instead of

delay loops, and system performance is increased. GUI functions have been assigned a low

priority over the data acquisition and process functions that are executed inside ISRs (Figure

3-39).

Figure 3-39 CPU Code Execution Priority

All initialisations of modules, peripherals and interfaces are performed during the boot up

sequence, which is executed only once at system power up. Many check conditions have

been included in the source code to allow better debugging and prevent some functions from

putting the system to an invalid state, should an error or undefined condition appear. The

default measuring units used for acquiring measurement data, calculating and storing results

are kilometres and litres. These were used because of my own familiarity with these units.

However, by driver’s selection, different measuring units can be displayed.

In the following pages some flowcharts for the basic functions performed by the

microcontroller’s firmware are also provided. Due to the extreme volume and complexity of

the source code it is not possible to deliver all flowcharts before deadline. For more

information on the actual operation of the firmware it is advisable to read the source files,

which are heavily and well commented.

DE MSc dissertation Issue 1: 16/9/02 Page 3-73 Panagiotis Kenterlis

•• GGeenneerraall FFlloowwcchhaarrttss

DE MSc dissertation Issue 1: 16/9/02 Page 3-74 Panagiotis Kenterlis

DE MSc dissertation Issue 1: 16/9/02 Page 3-75 Panagiotis Kenterlis

DE MSc dissertation Issue 1: 16/9/02 Page 3-76 Panagiotis Kenterlis

DE MSc dissertation Issue 1: 16/9/02 Page 3-77 Panagiotis Kenterlis

DE MSc dissertation Issue 1: 16/9/02 Page 3-78 Panagiotis Kenterlis

DE MSc dissertation Issue 1: 16/9/02 Page 3-79 Panagiotis Kenterlis

DE MSc dissertation Issue 1: 16/9/02 Page 3-80 Panagiotis Kenterlis

33..22..22..11.. TTrriipp DDaattaa SSttoorraaggee

Trip data is stored in the CompactFlash memory device in records. The formats of these

records are analysed below.

The Trip Stop record holds information about the time and date the trip was resumed

(every field takes 8bits), the amount of fuel inside the fuel tank when the vehicle stopped

(16bits), the amount of fuel (16bits) and the value of the trip odometer value (16bits), as well

as the identity of the driver (64bits) at the time the trip was resumed. The Trip Stop Number

field is an 8bit number that serially marks the trip route. All records saved in the CF card carry

this field to link them together.

Figure 3-40 Trip Stop Record

For the maximum number of 256 trip stop points, and with every Trip Stop record carrying

22bytes of information, the maximum number of sectors on the CF Card that needs to be

allocated for these records is:

Sectors
Sectorbytes

bytes
Sectorbytes

bytes 11
512

5632
512

22256Sectors OfNumber ==
⋅

=

DE MSc dissertation Issue 1: 16/9/02 Page 3-81 Panagiotis Kenterlis

The Trailer ID record holds the ID codes of the attached trailers. A maximum of 8 trailer ID

codes is held per record. The header includes a Start-of-Record character (‘@’), the Trip

Stop number and the number of discovered ID codes. The ID codes discovered follow next.

The record ends with an End-of-Record character (‘#’), which has been added to keep the

record size to an even number of bytes.

Figure 3-41 Trailer ID Record

For the maximum number of trip stop points and the maximum number of discovered ID

codes, a total of Sectors
Sectorbytes

bytes
Sectorbytes

bytesrecords 34
512

17408
512

68256Sector OfNumber ==
⋅

= needs

to be assigned on the CF Card.

The Tachograph record holds the vehicle’s road speed divided by 100 (16bits of data

stored in the integer form of e.g. 57.500km/h is saved as value 575), which is recorded for

every second of actual trip time.

Figure 3-42 Tachograph Record

In order to avoid reducing the CF Card’s lifetime by saving data every second, road speed

data is kept inside a buffer of 8 elements in depth (16bits per element) and flushed to the CF

DE MSc dissertation Issue 1: 16/9/02 Page 3-82 Panagiotis Kenterlis

Card when full, that is, every 8 seconds. Changing the depth of this buffer will prolong the CF

Card’s life.

During the initialisation phase of the firmware execution, the total number of sectors

available on the CF Card is discovered and used as the maximum sector value for storing

Tachograph Data. The number of sectors allocated to storing Tachograph information defines

the amount of total recorded trip time. To allow future upgrades to both software and

hardware, the Tachograph records are saved last on the CF Card.

The memory map of the CF Card is displayed in Figure 3-43 below.

Figure 3-43 CompactFlash Information Storage Map

The 4Mbytes version of the CF Card that was used for the project has a total of 7872

sectors in LBA mode, which amounts to bytesSectorbytesSectors 464,030,45127872 =⋅ . With

the memory map already displayed above, a total of 7825477872 =− Sectors are available

for Tachograph information to be stored. This capacity is enough for storing information for

seconds 2,003,200
sec2

ytes4,006,400b
sec2

5127825
==

⋅
ondbytesondbytes

SectorbytesSectors , which is equal to 23 days of

continuous driving (results to be verified by the reader).

By using a CF Card of larger capacity, Tachograph information can be stored over a much

longer period of time and by altering the firmware it is possible to increase the number of

identified trailers and use this facility for tracking contents of trailers.

DE MSc dissertation Issue 1: 16/9/02 Page 3-83 Panagiotis Kenterlis

33..22..33.. PPCC SSooffttwwaarree CCooddee EExxppllaannaattiioonn

The software utilities developed for the PC in Microsoft Visual Basic 6.0 for the Windows

platform are used to communicate with the trip computer through a serial port (by default set

to COM1, although it can be changed by the user) and control transfers of data to and from

the trip computer device. By implementing the analysed communications protocol these

programs can be easily ported to any operating system or programming language.

Short explanation and flowcharts for the most important functions executed by the

software on the PC are provided in the following pages. To obtain a more clear knowledge on

the actual code executed you are requested to read the well commented source code.

DE MSc dissertation Issue 1: 16/9/02 Page 3-84 Panagiotis Kenterlis

•• CCoonnffiigguurraattiioonn DDoowwnnllooaadd UUttiilliittyy

This utility is used for downloading configuration data for the automotive sensors

connected to the trip computer (Figure 3-44). Sensor parameters are given in clear text form

and can be saved to and/or stored in files. If required, the default communications port can

be changed to another COM port of the system where the utility is installed. Configurable

parameters are:

 Tire Perimeter (in metres) (32bits).

 Fuel Tank Capacity (in litres) (16bits).

 Pulses per Wheel Revolution (from Road Speed Sensor) (16bits).

 Pulses per Kilometre (from Road Speed Sensor) (32bits).

 Pulses per Engine Revolution (from Engine Speed Sensor) (16bits).

 Pulses per Litre (from Fuel Flow Meter) (32bits).

Figure 3-44 Hardware Configuration Utility

In the case that a sensor is replaced with one of different specifications, only the specific

information for its configuration needs to be changed. These parameters are stored in

the RAM of the external RTC on the trip computer and are used in calculations to

produce accurate results. The utility simply sends a Start of Communication Session

command and expects an acknowledgement (ACK) from the device, after that it sends

the Device Configuration command and the parameters. When every parameter has

been sent, acknowledgment from the device is expected to proceed with the next one.

DE MSc dissertation Issue 1: 16/9/02 Page 3-85 Panagiotis Kenterlis

oo GGeenneerraall FFlloowwcchhaarrtt

DE MSc dissertation Issue 1: 16/9/02 Page 3-86 Panagiotis Kenterlis

•• TTrriipp DDaattaa UUppllooaadd UUttiilliittyy

This utility is used for uploading vehicle and trip information stored on the CompactFlash

and saving them in files (Figure 3-45). Only sectors that carry information are uploaded to the

PC through the serial port. Data uploaded are stored in three different files (Trip Stop Log,

Trailer ID log, Tachograph information). To start the upload process the utility sends the Start

of Communication Session command and expects and acknowledgement from the device,

after that it sends the Upload Trip Data command to the trip computer. The trip computer

responds with the data in one sector (512bytes) plus the calculated CRC8 value of the data

sent. The PC monitors the serial port and every byte received is added to a temporary buffer.

Once 513bytes have been received, the PC recalculates the CRC8 value of the received

data and compares it to the received CRC8 value. If these values match, then the

transmission didn’t contain errors and the received data are appended to the currently

pointed file. The PC sends an ACK (Acknowledge) command to indicate that the sector was

received correctly and that the next sector should be sent. If the CRC8 values did not match

the received data are discarded and a NACK (Negative Acknowledge) command is sent to

the trip computer to indicate a transmission fault and request retransmission of the entire

sector. The PC also monitors the buffer for the appearance of special transmission

terminating commands. These commands indicate that a set of records has been uploaded

and that the PC should save the next data to be transmitted to the appropriate file (End of

Transmission Block), and that the entire upload procedure has finished and that the PC

should not wait for any more data to be received (End of Transmission).

Figure 3-45 Trip Data Upload Utility

DE MSc dissertation Issue 1: 16/9/02 Page 3-87 Panagiotis Kenterlis

oo GGeenneerraall FFlloowwcchhaarrttss

DE MSc dissertation Issue 1: 16/9/02 Page 3-88 Panagiotis Kenterlis

DE MSc dissertation Issue 1: 16/9/02 Page 4-89 Panagiotis Kenterlis

44.. BBuuiillddiinngg tthhee PPrroojjeecctt

44..11.. PPrraaccttiiccaall BBuuiillddiinngg CCoonnssiiddeerraattiioonnss

While in the development phase of the project, some problems needed to be resolved. The

most important of them are given in the text that follows. Both hardware and software

sections are mentioned.

44..11..11.. HHaarrddwwaarree

Developing the hardware part was somewhat tricky mainly because of the development

board used for the microcontroller (Axiom PB-0555). This board (Figure 4-1) provides almost

all the pins of the microcontroller in 4 headers of 4x17 pins each. Trying to establish a fixed

connection of the developed hardware with the development board required some

manufacturing tricks, since no standard connectors are available for such a pin layout. The

main concern was to avoid using a soldering iron on the board itself that could incur possible

damage.

Figure 4-1 Photograph of the MPC555 Development Board

This obstacle was overcome by using single row pin connectors and arranging them on a

spotted matrix board, so that all of the microcontroller’s pins would become available on the

DE MSc dissertation Issue 1: 16/9/02 Page 4-90 Panagiotis Kenterlis

copper side of the matrix board. After that, the matrix board was used to form a motherboard

with connectors for all other developed peripheral boards (Figure 4-2).

Figure 4-2 Development Board with Connected Motherboard

44..11..22.. SSooffttwwaarree

The main problems encountered with the software part of the project was obtaining the

license for the Metrowerks CodeWarrior and configuring the target settings for the

microcontroller development board used, since no stationery was available for it. Having no

external memory on the development board, all software development needed to be done in

internal memory. For the Debug version the limited memory size for code development

(26Kbytes SRAM) and the fact that at this mode processing of interrupts could not be

performed was a problem. For the ROM version although code size was not an issue

(448Kbytes FLASH available) and interrupts could be processed, however, actual debugging

could not be performed and a very time-consuming FLASH program download procedure

had to be performed every time the code changed. In addition programming the FLASH

memory was limited to a maximum of 100 cycles so care had to be taken not to wear out the

FLASH memory cells. A mixture of both target versions was used; Debug when specific

routines needed to be tested and ROM when interrupts had to be processed to view system

response.

DE MSc dissertation Issue 1: 16/9/02 Page 5-91 Panagiotis Kenterlis

55.. TTeessttiinngg && DDeebbuuggggiinngg

The device developed was fully tested in laboratory conditions with all connections to

automotive sensors being emulated by standard testing methods and equipment. Field tests

could not be performed because of the requirements for such a case, i.e. the trip computer

would have to be installed on a truck and tested in a real trip scenario.

While developing the project, at all times there was need to test changes in the programs

and the operation of modules.

For this purpose the following tools were used:

o A fixed frequency crystal oscillator running at 32.768 kHz.

o A pulse generator.

o A digital Multimeter.

o The microcontroller’s serial port in connection to the PC.

o The display module, for displaying test information.

o And largely the Metrowerks CodeWarrior 6.03 Integrated Development Environment,

used as a debugger-emulator.

Figure 5-1 Oscilloscope view of square

wave signal

Both the crystal oscillator and the pulse generator

were used to provide square wave pulses to the

TPU3 inputs of the microcontroller in order to

emulate the automotive sensors for road speed,

engine speed and fuel flow.

Figure 5-2 Multimeter used to test voltage
level of I/O pin

The digital Multimeter was used to measure

voltage levels on various test points while

developing system circuits. Being the first testing

device to be involved while still starting on the

project, it was first used to verify the logic value of

I/O pins of the MIOS1 module, when the control

functions for that module were developed. Also used

to check circuit boards for short-circuits and

electrical continuity of connection wiring.

DE MSc dissertation Issue 1: 16/9/02 Page 5-92 Panagiotis Kenterlis

The microcontroller’s serial port connected to the serial port of a PC running terminal

emulation software proved to be a very helpful debugging tool. Printing information on the

terminal window such as test values, contents of registers, breakpoint execution flag text,

measurement readings and time signaling, were all functions that were performed to help

eradicate bugs and improve the design of both software and hardware.

In Figure 5-3, frequency/pulse counting results of the TPU channels for Road Speed and

Engine Speed sensors are displayed with a display frequency of once per second, as code

was executed inside the ISR of the internal RTC.

Figure 5-3 PC Terminal Debugging

DE MSc dissertation Issue 1: 16/9/02 Page 5-93 Panagiotis Kenterlis

The Metrowerks CodeWarrior IDE was the most important of all development, testing and

debugging tools. With the use of a device connected on the parallel port (MSI Wiggler),

CodeWarrior was able to communicate with the microcontroller and its BDM port

(Background Debug Mode) (Ref. [6] & [10]). The Wiggler is effectively, at a minimum, a

parallel port to JTAG (Joint Testing Action Group) serial interface converter. The BDM port,

which is based on the JTAG interface, allows for instructions and data to be downloaded to

the microcontroller even at execution time, accessing and modifying memory and processor

resources, single stepping, processor reset and status control (running or halted). It

essentially allows the user to download a program in RAM and execute it by using a

software-hardware control scheme, with the microcontroller itself acting like an In-Circuit

Emulator (ICE). The entire scheme is called On-Chip Debugging (OCD) by Motorola and it is

used in many of its products.

In the screenshot of Figure 5-4, Metrowerks CodeWarrior is displayed while debugging the

application software by using the opened windows to display processor registers and

memory locations, as well as code that is executed both in C language and assembly.

Instructions can be executed step-by-step in both C and Assembly, while the result of every

instruction can be monitored by looking at the relating processor/system information window.

Figure 5-4 Debugging of the application software using BDM/OCD inside Metrowerks
CodeWarrior

DE MSc dissertation Issue 1: 16/9/02 Page 5-94 Panagiotis Kenterlis

In Figure 5-5 the full set of General Purpose Registers of the PowerPC architecture

followed by the MPC555 is displayed and changes can be monitored while executing the

application code. Like a true debugging tool, the user can also alter the contents of any

register whenever this is needed.

Figure 5-5 General Purpose Registers of the Microcontroller in BDM while executing
the application.

Other available facilities are Memory Dump, Special Function Register windows,

displaying memory contents as any type of data (binary, hexadecimal, long integer, floating

point number, text, arrays, etc).

Figure 5-6 Source Code Execution Window

The Source Code Execution

window displays the source

code to be executed. The user

can execute the code step-by-

step, insert breakpoints, start

and stop execution, enter

functions or simply execute

them and change execution

flow. The program being

executed can be displayed as

C/C++ and/or assembly code.

The values of local and

global variables are also

displayed and can be altered.

The Stack pane allows viewing of local variables and temporary variables used in stacked

functions.

DE MSc dissertation Issue 1: 16/9/02 Page 5-95 Panagiotis Kenterlis

One of the methods used to test and debug the CF Card storage functions and the serial

upload functions of the trip computer was to save an entire sector of data (512 bytes) with

incrementing values from 0 to 255 and then display them on the computer’s screen. The

same test was also executed in Metrowerks CodeWarrior and results displayed as data

elements of an array. Once the data had been uploaded to the PC and saved to a file, they

were displayed by using a Hex-Editor (in this case the Norton Commander Editor). In Figure

5-7 and Figure 5-8 the contents of one sector filled with test data are displayed in both

Hexadecimal and ASCII.

Figure 5-7 Sector Contents as uploaded to the PC (1/2)

Figure 5-8 Sector Contents as uploaded to the PC (2/2)

DE MSc dissertation Issue 1: 16/9/02 Page 5-96 Panagiotis Kenterlis

55..11.. EElleeccttrroommaaggnneettiicc CCoommppaattiibbiilliittyy IIssssuueess

With the automotive environment being extremely rich in electrical noise, due to spark

plugs and solenoids on the engine, there is need for immunization of the device. To achieve

this, the trip computer circuit boards have to be placed in a steel enclosure and ferrite beads

mounted to all wires in and out. The microcontroller is equipped with a watchdog timer on-

chip, which should be enabled to eradicate rampant processor behaviour. In addition, the

power supply to the device needs to feature a large capacitor to compensate for

instantaneous power loss when turning on the ignition, as well as transient voltage

suppressor diodes to filter out high frequency voltage spikes.

DE MSc dissertation Issue 1: 16/9/02 Page 6-97 Panagiotis Kenterlis

66.. PPrroojjeecctt RReessuullttss

Upon completion of the project all specifications drawn at the beginning and reviewed

during the course of development have been met, along with a few more not originally

included. This was made possible by performing a well-planned, methodical programming

and module usage, as well as exploiting a number of features found being hidden in the

microcontroller’s datasheets. The designed hardware device is capable of performing the

following functions:

1. Current speed shown in two measurement systems (km/h and m/h).

2. Road Speed statistics such as maximum road speed, average road speed, and

maximum average road speed.

3. Present vehicle location (relative to distance from next stop) by displaying a trip

odometer and distance to next stop and to final destination.

4. Total elapsed time since start of trip (drive time).

5. Elapsed trip time since last stop (drive time).

6. Vehicle’s Battery Voltage.

7. Fuel remaining in the fuel tank in two measurement systems (litres and gallons).

8. Distance to empty fuel tank in two measurement systems (km and miles).

9. Total amount of fuel used since trip start in two measurement systems (litres and

gallons).

10. Instantaneous fuel flow rate in two measurement systems with four variations

(km/litre, miles/litre, km/gallon and miles/gallon).

11. Estimated time till arrival to the next stop point.

12. Estimated time of arrival to the next stop point.

13. Time of day displayed on-screen (Home Time/Date).

14. Date displayed on-screen (Home Time/Date).

15. Local time, calculated by entering a time difference from Home Time.

16. Alarm clock that can be set by the driver to sound at specific time of day.

17. Engine speed in 1000x RPM.

18. Engine Speed statistics (maximum engine speed and average engine speed).

19. Vehicle’s independent digital odometer.

20. Trip independent digital odometer.

21. Outside/Cabin temperature acquired by a digital thermometer device.

DE MSc dissertation Issue 1: 16/9/02 Page 6-98 Panagiotis Kenterlis

22. Tiredness warning after 3 hours of continuous driving (according to EU traffic laws).

23. Driver’s ID logging using a digital key.

24. Trailer identification and logging using digitally coded devices.

The memory device (CF card) is used to store the following set of information:

1. Time and date of trip resume after leaving a stop point.

2. Trip odometer value displayed at trip resume point.

3. Fuel gauge indication before vehicle stopping and after vehicle continuing trip from a

stop point (refuel mark-up).

4. Driver’s digital ID code to allow tracking a driver change over the trip duration.

5. A log of all trailer digital ID codes at every stop point, to allow tracking of trailers being

transported.

6. Arrays of tachograph information (road speed) starting at every resume trip point and

stopping at every trip stop point. Values are acquired every second and saved on the

memory device every 8 seconds or when a sector buffer is full or another event e.g.

signal from a G sensor indicating an accident has occurred (should that be

implemented in future product upgrades).

Having implemented part 6 of the above list, the Trip Computer device can be used as a

simplistic trip data recorder in the undesirable event of an accident, as evidence of the

vehicle’s road speed seconds or minutes before the accident. Such functionality makes the

installation of the trip computer on a vehicle fleet even more useful to companies, since it

could be used in a court of law to relieve both driver and company from legal accusations and

financial claims.

As indicated in the finalised specifications list, all information saved in the CF Card are

uploaded to a personal computer using software utilities specifically designed for that

purpose. After the information has been saved on the PC, a software program, which was not

developed as part of the project due to limited time at hand, can be used to process the data

files and visualize the information for inspection and statistical or other analysis.

By implementing all of the above, the project can be characterized as successfully having

met with the targets that had been designated, in order to develop a product unique and

functional in its whole.

DE MSc dissertation Issue 1: 16/9/02 Page 7-99 Panagiotis Kenterlis

77.. FFuuttuurree UUppggrraaddeess aanndd DDeevveellooppmmeenntt

Like any other product, the trip computer can be deployed to include even more features

and thus exploit more of the microcontroller’s true capabilities, which exceed the ones

currently used for this project.

Future plans on the software side of the project should certainly include building an

Integrated PC Software Suite, which was not developed as part of the project and will

assume the management of entire fleets of vehicles and automate various procedures.

Future hardware upgrades could also include some ideas originally suggested, however

during the selection phase were eliminated either because of cost, complexity or time

margins:

o Implementing a high speed communications bus such as the Universal Serial Bus (USB)

will minimize data upload times, especially when collecting data after a very long trip,

with the amount of stored information being proportionately high.

o Incorporating a GPS receiver would allow recording the exact position of the vehicle at

every time. By doing so, it is possible during the data process phase, to verify that the

driver has followed the route suggested by the company. Also to make the product even

more appealing, it would be interesting and useful, if by connecting to a PC or PDA to

display vehicle’s current position on digital maps relatively to the drawn route.

o A wireless communications channel, such as GSM/DCS, could allow transferring data

from the device to the company’s computers during the trip, even when abroad. This can

prove to be very useful to a company that wishes to be aware of the location of its

vehicles at regular intervals.

o By using more sensor inputs and connecting to the Engine Control Unit of the vehicle, it

will be possible to provide more information on the vehicle’s status. Following this, the

trip computer could eventually replace the entire vehicle’s analogue instruments

dashboard.

DE MSc dissertation Issue 1: 16/9/02 Page 8-100 Panagiotis Kenterlis

88.. CCoonncclluussiioonnss

Having finished this project, I feel more confident about my abilities in handling projects of

such magnitude in real life. Managing such a project, although difficult at some points and

damaging to my bank account, it proved to be a very interesting and invaluable experience.

Much knowledge was gained from the logical reflections occurring at every moment, as many

aspects of the problems being faced with needed to be considered in order to decide on the

best likely solution.

During both research and development periods, I had the opportunity to study on real-time

embedded systems and expand my knowledge in microcontroller and microprocessor

systems design, which is my main field of interest.

Never having a driving license before or being interested in cars in any way, studying in

the field of automotive applications provided some background information on the technology

of engines, mechanical, electrical and electronic systems found on cars. Although this hasn’t

dispelled my fears of becoming a driver, it will at least assist me in understanding better what

is happening underneath the metallic hood or plastic covers, and in the future may point me

in design more products for the automotive market.

In conclusion, as expected, this project proved to be the most exciting and most educative

part of the MSc course.

DE MSc dissertation Issue 1: 16/9/02 Page 9-101 Panagiotis Kenterlis

99.. PPrroojjeecctt MMaannaaggeemmeenntt

99..11.. HHooww WWaass tthhee PPrroojjeecctt PPllaannnneedd??

The Baseline Time Schedule for the project was designed for a development period of

11weeks using a worst case scenario. This scenario assumed that every task would take up

the entire day allocated to it, without dealing with other tasks. At the time the project was

being planned little knowledge was present on the difficulty level in using the development

tools, which were therefore considered to be not extremely productive. In addition the

author’s abilities to deal with 32bit advanced microcontrollers and complex real-time software

were assumed to be basic at that point. Uncertainty in the selection of module inter-

connection protocols until the related components were available, also contributed in the

decision to follow a scenario of such a wide time spread.

However, the initially drawn baseline plan proved to be inconsistent with reality. While

working with the development tools, although initially a myriad of problems had to be solved,

seeking for advices on the internet from a forum specifically for these tools helped gradually

solve problems at a short time, and proved highly productive. Dealing with many tasks at the

same period of time also allowed to accumulate knowledge much faster and thus helped to

get a clearer picture of the project at an early time. It was thus discovered that the author was

underestimated for his abilities in dealing with such a complex project. Additionally by cutting

corners and underwriting the financial burden of purchasing the most essential components,

saved much time in obtaining the components and allowed to start development of the

related project sections earlier. The end result of these actions was for the development

phase of the project to actually last 7weeks, which is 4weeks earlier than originally planned.

This march of events was greeted with a smile of contentment since it allowed more time

to be spent preparing this assignment, as well as the project’s presentation and report.

DE MSc dissertation Issue 1: 16/9/02 Page 9-102 Panagiotis Kenterlis

99..22.. PPrroobblleemmss aanndd AAcchhiieevveemmeennttss

Some ideas that emerged during the research period, like incorporating a GPS receiver

and a high speed communications bus had to be abandoned after careful consideration of

cost levels, time available for project completion and possible impact on the product if

removed. More specifically the cost was prohibiting in both cases and only if removed (GPS)

or replaced with lower cost versions (communications bus) the project could be kept inside

budget and deadlines.

While still discussing with the project supervisor on the available funds for the project, it

became clear that there might be some problems in obtaining some of the expensive parts.

That led the author to purchase the display module using own funds. The module was

delivered 5 weeks earlier than originally planned, had it been obtained through the university.

In addition to the above, many components and parts were purchased by the author to

allow for faster delivery times, than if ordered through the university. As proven later by the

extremely slow delivery rate of components that had been ordered through the university, this

decision was very wise and saved lots of development time, although it surely cost more.

However during development stages where specifications have not been absolutely finalised,

time is of more essence, while actually finding the most cost-effective supplier for the same

parts to be used can be a matter to resolve prior the manufacturing stage. It is always

necessary to keep in mind that large deviations from the drawn budget should not become

common practice.

The above mentioned steps helped finish the project earlier than originally planned, thus

allowing more time for testing and debugging to develop a stable and full-featured product.

More available time also allowed finishing all writing works earlier or at least provided more

time to produce a better result.

At the start of the development period of the project a number of connectors were required

to build a main adapter board that would allow connection of the peripheral boards to the

microcontroller’s development board. Although having been reassured that the supplier

would be able to deliver these within a few days, in reality it took more than 6 weeks just to

receive the wrong type of connectors. Having nearly finished with the hardware development

and urgently needing these connectors, switching suppliers seemed the only solution to

obtain the parts required. The second supplier having compatible connectors at the same

price managed to deliver the parts one day after the order was placed. This allowed finishing

the project within 2-3 days (See Gantt Chart in the Appendix).

DE MSc dissertation Issue 1: 16/9/02 Page 10-103 Panagiotis Kenterlis

1100.. BBiibblliiooggrraapphhyy

[1] Kelley, A., Pohl. I., - C by Dissection, The Essentials of C Programming. Second

Edition. – Benjamin/Cummins, Redwood City, California, USA, 1992. – ISBN 0-

80533-140-9

[2] IEE, - Automotive Electronics, Conference Publication No. 346, - Institute of Electrical

Engineers, London, UK, 1991. - ISBN 0 85296 525 7, ISSN 0537-9989

[3] Bromley, P. J. - Advanced Automotive Electronics. - IFS Publications, UK, 1989. -

ISBN 1-85423-044-1

[4] Chowanietz, E., - Automobile Electronics. – Newnes, Oxford, UK, 1995. – ISBN 0-

7506-1878-7

[5] Ribbens, W. B., - Understanding Automotive Electronics. Fifth Edition. – Newnes,

Oxford, UK, 1998. – ISBN 0-7506-7008-8

[6] Nwagboso, C. O., - Automotive Sensory Systems. – Chapman & Hall, London, UK,

1993. – ISBN 0-412-45880-2

[7] BOSCH. – Automotive Handbook. Fifth Edition. – Robert Bosch GmbH, Stuttgart,

Germany, 2000. – ISBN 0-8376-0614-4

[8] IBM, International Business Machines Inc., – The PowerPC Architecture: A

Specification for a New Family of RISC Processors. – Morgan Kaufmann Publishers

Inc., San Francisco, USA, 1993- 1994. - ISBN 1-55860-316-6

[9] Cooling, J. E., - Real Time Interfacing, Engineering aspects of microprocessor

peripheral systems. – Van Norstrand Reinhold (UK) Co. Ltd, Berkshire, UK, 1986. –

ISBN 0-442-31755-7

[10] Mustafa, M. A., - Microcomputer Interfacing and Applications. Second Edition.–

Newnes, Oxford, UK, 1994. – ISBN 0-7506-1752-7

DE MSc dissertation Issue 1: 16/9/02 Page 11-104 Panagiotis Kenterlis

1111.. RReeffeerreenncceess -- OOtthheerr DDooccuummeennttss
[1] 50 Ways to Touch Memory. Second Edition. October 1992 – Dallas Semiconductors.

[2] Application Note 2109 on MPC555 Interrupt Handling – PDF document describing

how to program and handle interrupts on the MPC555 – Published by Motorola Inc. -

Found on http://e-www.motorola.com (original URL too long to publish) and also

included in the project’s documentation CD (an2109sw.zip).

[3] CompactFlash Card Specifications Manual – PDF file describing the electrical,

mechanical specifications and interface protocols of the CompactFlash Card –

Published by the CompactFlash Association – Found on http://www.compactflash.org

and also included in the project’s documentation CD (cfspc1_4.pdf).

[4] Frequency Measurement Function – PDF file describing the configuration of a TPU

channel and the operation of the FQM function – Published by Motorola Inc. – Found

on http://e-www.motorola.com (original URL too long to publish) and also included in

the project’s documentation CD (TPUPN03-FQM.pdf).

[5] IDE User’s Guide – PDF document on using CodeWarrior – Published by Metrowerks

Inc. – Available in the installation CD

[6] Motorola MPC555/MPC556 User’s Guide – Set of PDF documents describing the

programming of every module on the MPC555 – Published by Motorola Inc. – Found

on http://e-www.motorola.com (original URL too long to publish) and also included in

the project’s documentation CD (mpc555um_zip.zip).

[7] New Input Capture/Input Transition Counter TPU Function – PDF file describing the

configuration of a TPU channel and the operation of the NITC function - – Published

by Motorola Inc. – Found on http://e-www.motorola.com (original URL too long to

publish) and also included in the project’s documentation CD (TPUPN08-NITC.pdf).

[8] Opesanwo, A. O., - Engine Management Using a PowerPC MPC555. Final Year

Project Report. – Project Supervisor Mr. C. S. Knight, -University of Brighton, May

2002

[9] Targeting Embedded PPC. – PDF file describing the configuration of Metrowerks

CodeWarrior IDE for Embedded PPC – Published by Metrowerks Inc. – Found on

Metrowerks CodeWarrior installation CD (Targeting_Embedded_PPC.pdf)

[10] The Zen of BDM – White paper on debugging by Craig Haller of Macgraigor Systems.

Found on http://www.metrowerks.com/tools/documentation/embedded/zenofbdm and

also included in the project’s documentation CD.

DE MSc dissertation Issue 1: 16/9/02 Page 11-105 Panagiotis Kenterlis

1111..11.. UURRLLss
[1] About, Inc. – Making Sense of Sensors: Part One

Available from: http://autorepair.about.com/library/weekly/aa030301c.htm

Last Accessed 10/9/2002

[2] ACDelco – The Engine

Available from: http://www.weekendmechanicsclub.com/ACDelco/vobeng1.htm

Last Accessed 10/9/2002

[3] AudiWorld – AudiWorld Tech Articles

Available from: http://www.audiworld.com/tech/elec57.shtml

Last Accessed 10/9/2002

[4] C&H Promotions – VH Trip Computer Instructions

Available from: http://members2.easyspace.com/hotholdens/model/v/vh_trip_computer.html

Last Accessed 10/9/2002

[5] California Polytechnic State University – Design of an Aircraft Engine Management System

Available from: http://fp3.antelecom.net/tbehrens/aems555/code.html

Last Accessed 10/9/2002

[6] ChipCenter-QuestLink – PIC A COMPACTFLASH CARD

Available from: http://www.chipcenter.com/circuitcellar/february01/c0201ms1.htm

Last Accessed 10/9/2002

[7] CompactFlash Association

Available from: http://www.compactflash.org/

Last Accessed 10/9/2002

[8] Dallas/Maxim – 1Wire and iButton Products

Available from: http://dbserv.maxim-ic.com/1-Wire.cfm

Last Accessed 10/9/2002

[9] Dallas/Maxim – Integrated Circuits (ICs) for Automotive Sensors

Available from: http://dbserv.maxim-ic.com/solutions.cfm?cpk=5

Last Accessed 10/9/2002

[10] Electro-Logic Machines, Inc. – TPU Products and Information

Available from: http://www.elmi.com/tpu.html

Last Accessed 10/9/2002

[11] Ford Capri Fan Club Page – Ford Capri Trip Computer

Available from: http://www.capri.pl/garage/ford-trip-computer.php

Last Accessed 10/9/2002

DE MSc dissertation Issue 1: 16/9/02 Page 11-106 Panagiotis Kenterlis

[12] Integrated Publishing - Basic Automotive Electricity

Available from:

http://autorepair.about.com/gi/dynamic/offsite.htm?site=http%3A%2F%2Fwww.tpub.com%2Fbasae

%2F

Last Accessed 10/9/2002

[13] Ivopol A. T. – IDE, Hardware Reference & Information Document

Available from: http://www.repairfaq.org/filipg/LINK/F_IDE-tech.html

Last Accessed 10/9/2002

[14] Johnson Controls, Inc. – Reconfigurable Trip Computer

Available from:

http://www.johnsoncontrols.com/asg-electronics/products/infosys/reconfig_trip_cmptr.asp

Last Accessed 10/9/2002

[15] Kopelson C. – Speedometers and Odometers

Available from: http://www.amghummer.com/Accessories/Speedometer/Speedometers.htm

Last Accessed 10/9/2002

[16] Marshall Brain’s HowStuffWorks – How Car Computers Work

Available from: http://www.howstuffworks.com/car-computer.htm

Last Accessed 10/9/2002

[17] Marshall Brain’s HowStuffWorks – How Diesel Engines Work

Available from: http://www.howstuffworks.com/diesel.htm

Last Accessed 10/9/2002

[18] Moore W. – Wesley’s PIC pages: IDE Controller

Available from: http://www.pjrc.com/tech/8051/ide/wesley.html

Last Accessed 10/9/2002

[19] National Instruments Corp. – Automotive Electronics

Available from: http://www.ni.com/automotive/auto_electronics.htm

Last Accessed 10/9/2002

[20] Noritake-Itron – Noritake-Itron VFD Operation

Available from: http://www.noritake-itron.com/SubPages/vfdoperapn.htm

Last Accessed 10/9/2002

[21] Noritake-Itron – VFD Module Application Notes

Available from: http://www.noritake-itron.com/SubPages/vfmodapn.htm

Last Accessed 10/9/2002

[22] P.A.P. den Haan – EIDE/Ultra ATA storage page

Available from: http://thef-nym.sci.kun.nl/~pieterh/storage.html

Last Accessed 10/9/2002

[23] PicList Forum – Disk Drives

Available from: http://www.piclist.com/techref/drives.htm

Last Accessed 10/9/2002

DE MSc dissertation Issue 1: 16/9/02 Page 11-107 Panagiotis Kenterlis

[24] Powell J. – Jim Powell’s BMW Page (Fuel Sending Units)

Available from:

http://www.apexcone.com/TechProcedures/FuelSendingUnits/FuelSendingUnits.html

Last Accessed 10/9/2002

[25] Scania – Scania Trip Computer

Available from: http://www.scania.com/ms/events/000922/press/P00906EN.htm

Last Accessed 10/9/2002

[26] Sensatech Ltd – Automotive Truck, Bus & PSV Industry

Available from: http://www.sensatech.com/industries/automotive_truck.html

Last Accessed 10/9/2002

[27] SLTF Consulting – Embedded System Design Articles

Available from: http://www.sltf.com/articles/artindex.htm

Last Accessed 10/9/2002

[28] SLTF Consulting - PC Cards as EPROM replacements

Available from: http://www.sltf.com/articles/pein/pein9608.htm

Last Accessed 10/9/2002

[29] SmartTrac Computer Systems, Inc. – Dashboard Gauges

Available from: http://www.familycar.com/dashboard.htm

Last Accessed 10/9/2002

[30] ST Aviation Limited – Fuel Monitor

Available from: http://www.jabiru.co.uk/fuelmon.html

Last Accessed 10/9/2002

[31] Stoffregen P. –Paul’s 8051 Code Library, IDE Hard Drive Interface

Available from: http://www.pjrc.com/tech/8051/ide/

Last Accessed 10/9/2002

[32] Unknown Author’s Page – TPU Function Source Code and Tools

Available from: http://www.eslave.net/tpu/source/source.shtml

Last Accessed 10/9/2002

[33] Unknown Author’s Page – Trip Computer Install

Available from: http://go.jeep-xj.info/How%20to12.htm

Last Accessed 10/9/2002

[34] Web Publications Pty Limited – Inside the Black Box

Available from: http://www.autospeed.com/A_1227/P_1/article.html

Last Accessed 10/9/2002

[35] Webb J., Maier M., McFarlin K., – Automotive Engine Instrumentation System

Available from: http://www.mil.ufl.edu/~jwebb/senior-design/senior-design.html

Last Accessed 10/9/2002

DE MSc dissertation Issue 1: 16/9/02 Page A-108 Panagiotis Kenterlis

AA.. AAppppeennddiixx

Appendix 1 Contents of 555_Axiom_ROM.lcf File

_flash_source = 0x00010000; // **NOTE: MUST match RAM buffer address
 // setting in linker preference panel

MEMORY {
 ram : org = 0x003FA000, len=0x6000
 rom : org = 0x00010000 // desired ROM address (boot address for 555)
}

/* We use FORCEFILES so that the linker will not deadstrip the file reset.s. The function
 reset would be deadstripped since it is not ever called by anything */

FORCEACTIVE { gInterruptVectorTable, __reset }

SECTIONS {

 .reset(TEXT) BIND(0x10000) ALIGN(0x100) : {} >rom
 .init (TEXT) ALIGN(0x100): {} >rom

 GROUP BIND(0x10000): {

 .text (TEXT) ALIGN(0x2000): {}
 .rodata (CONST) : {
 *(.rdata)
 *(.rodata)
 }
 .ctors : {}
 .dtors : {}
 extab : {}
 extabindex : {}
 } > rom // for ROM images, this can be 'rom' if you want to execute in ROM
 // or 'code' if you want to execute in RAM
 GROUP : {
 .data : {}
 .sdata : {}
 .sbss : {}
 .sdata2 : {}
 .sbss2 : {}
 .bss : {}
 .PPC.EMB.sdata0 : {}
 .PPC.EMB.sbss0 : {}
 } > ram

 // The dummy section is just a placeholder. The linker automatically
 // generates an address for it in the ROM image, which tells us
 // where the end of the ROM image is.

 .dummy ALIGN(64): {}

 _flash_dest = _f_reset; // true flash address starts w/.init section

DE MSc dissertation Issue 1: 16/9/02 Page A-109 Panagiotis Kenterlis

 _flash_size = _f_dummy_rom - _flash_dest;

 // The .fcopy section contains a small piece of code that copies the
 // ROM image to flash. We don't copy the .fcopy section itself to flash
 // because it could erase the flash if it were accidentally executed
 // at a later time.
 //
 // Bind it to the address it will occupy in the RAM buffer so we can
 // execute it directly from the RAM buffer.

 .fcopy BIND(_flash_source + _flash_size) ALIGN(64) : {
 *(.fcopy)
 }

 .fcopy_data : {}

 // The internal flash algorithms provided by Motorola are
 // packaged in a binary file. The linker includes the contents
 // in the .BINARY section.
 .BINARY : {}
}

Appendix 2 Contents of 555_AXIOM_flash_init.cfg File

writereg MSR 0x00003002 ; MSR
writespr 27 0x3002 ; SRR1
writespr 560 0x0000 ; BBCMCR
writemem.l 0x002fc384 0x55ccaa33 ; PLPRCRK: open key

;Problem on CME-555 board: SIUMCR set the IRQ0 (NMI) to a SPGOC0
writemem.l 0x002FC000 0x00000000

;(disable) watch dog / SYPCR=0xFF88
;writemem.l 0x002FC004 0xFFFFFF88
writemem.l 0x002FC004 0x0000FF88

;Enable internal flash (CMF A at 0x0-0x3FFFF, CMF B at 0x40000-0x6FFFF)
writereg IMMR 0xFFF00800 ;set FLEN bit in IMMR register (overwrites RCW
register, FLEN flag)
writemem.l 0x002FC800 0x85000000 ;CMFMCR A
writemem.l 0x002FC808 0x00000022 ;CMFCTL A
writemem.l 0x002FC840 0x85000000 ;CMFMCR B
writemem.l 0x002FC848 0x00000022 ;CMFCTL B

;CS0: Disabled
writemem.l 0x002FC100 0x00A00002 ;BR0:
writemem.l 0x002FC104 0xFFF80012 ;OR0:

;CS1: Disabled
writemem.l 0x002FC108 0x00C00002 ;;
writemem.l 0x002FC10C 0xFFF80012 ;;

;CS2: Disabled
writemem.l 0x002FC110 0x00C00002
writemem.l 0x002FC114 0xFFF80012

DE MSc dissertation Issue 1: 16/9/02 Page A-110 Panagiotis Kenterlis

;CS3: Disabled
writemem.l 0x002FC118 0x00D00002
writemem.l 0x002FC11C 0xFFF80012

;set PLPRCR to have 40 MHz (required by GMD driver for flashing)
writemem.l 0x002FC284 0x00900000

writemem.l 0x002fc140 0x00000000 ; DMBR ;Dual Mapping off
writemem.l 0x002fc144 0x00000000 ; DMOR
writemem.w 0x00300000 0x0000 ; DPTMCR
writemem.w 0x00300004 0xffa0 ; RAMBAR
writemem.w 0x00305014 0x0000 ; PORTQS
writemem.w 0x00305016 0x0000 ; PQSPAR/DDRQS
writemem.w 0x00306100 0x0000 ; MPIOSMDR
writemem.w 0x00306102 0x0000 ; MPIOSMDDR
writemem.w 0x00306800 0x0000 ; MIOS1TPCR
writemem.l 0x00380000 0x00000000 ; SRAMMCR
writemem.l 0x002fc024 0x00000000 ; SGPIODT1
writemem.l 0x002fc028 0x00000000 ; SGPIODT2
writemem.l 0x002fc02c 0x00000000 ; SGPIOCR
writemem.l 0x002fc030 0x00000000 ; EMCR
writemem.l 0x00307f80 0x00000000 ; UMCR

#--
The debugger sets the DER register based on the EPPC Exceptions
preference panel after running this initialization file, this
this value will be overwritten. We only put it in here because
the flash programmer uses this file also.
#--
writereg DER 0x73e67c0f

DE MSc dissertation Issue 1: 16/9/02 Page A-111 Panagiotis Kenterlis

DE MSc dissertation Issue 1: 16/9/02 Page A-112 Panagiotis Kenterlis

DE MSc dissertation Issue 1: 16/9/02 Page A-113 Panagiotis Kenterlis

Appendix 3 Photo of Hardware during Development Period

DE MSc dissertation Issue 1: 16/9/02 Page A-114 Panagiotis Kenterlis

Appendix 4 Photo of Developed Hardware

DE MSc dissertation Issue 1: 16/9/02 Page A-115 Panagiotis Kenterlis

Appendix 5 GUI Screenshots

DE MSc dissertation Issue 1: 16/9/02 Page A-116 Panagiotis Kenterlis

DE MSc dissertation Issue 1: 16/9/02 Page A-117 Panagiotis Kenterlis

Appendix 6 Gantt chart

DE MSc dissertation Issue 1: 16/9/02 Page A-118 Panagiotis Kenterlis

DE MSc dissertation Issue 1: 16/9/02 Page A-119 Panagiotis Kenterlis

DE MSc dissertation Issue 1: 16/9/02 Page A-120 Panagiotis Kenterlis

Appendix 7 Manuals and Documents not in Electronic Form

